TY - JOUR A1 - Schiffers, Katja A1 - Schurr, Frank Martin A1 - Tielbörger, Katja A1 - Urbach, Carsten A1 - Moloney, Kirk A. A1 - Jeltsch, Florian T1 - Dealing with virtual aggregation : a new index for analysing heterogeneous point patterns Y1 - 2008 UR - http://www3.interscience.wiley.com/journal/117966123/home U6 - https://doi.org/10.1111/j.0906-7590.2008.05374.x SN - 0906-7590 ER - TY - JOUR A1 - Moloney, Kirk A. A1 - Holzapfel, Claus A1 - Tielbörger, Katja A1 - Jeltsch, Florian A1 - Schurr, Frank Martin T1 - Rethinking the common garden in invasion research N2 - In common garden experiments, a number of genotypes are raised in a common environment in order to quantify the genetic component of phenotypic variation. Common gardens are thus ideally suited for disentangling how genetic and environmental factors contribute to the success of invasive species in their new non-native range. Although common garden experiments are increasingly employed in the study of invasive species, there has been little discussion about how these experiments should be designed for greatest utility. We argue that this has delayed progress in developing a general theory of invasion biology. We suggest a minimum optimal design (MOD) for common garden studies that target the ecological and evolutionary processes leading to phenotypic differentiation between native and invasive ranges. This involves four elements: (A) multiple, strategically sited garden locations, involving at the very least four gardens (2 in the native range and 2 in the invaded range); (B) careful consideration of the genetic design of the experiment; (C) standardization of experimental protocols across all gardens; and (D) care to ensure the biosafety of the experiment. Our understanding of the evolutionary ecology of biological invasions will be greatly enhanced by common garden studies, if and only if they are designed in a more systematic fashion, incorporating at the very least the MOD suggested here. Y1 - 2009 UR - http://www.sciencedirect.com/science/journal/14338319 U6 - https://doi.org/10.1016/j.ppees.2009.05.002 SN - 1433-8319 ER - TY - JOUR A1 - Petru, Martina A1 - Tielbörger, Katja A1 - Belkin, Ruthie A1 - Sternberg, Marcelo A1 - Jeltsch, Florian T1 - Life history variation in an annual plant under two opposing environmental constraints along an aridity gradient N2 - Environmental gradients represent an ideal framework for studying adaptive variation in the life history of plant species. However, on very steep gradients, largely contrasting conditions at the two gradient ends often limit the distribution of the same species across the whole range of environmental conditions. Here, we study phenotypic variation in a winter annual crucifer Biscutella didyma persisting along a steep gradient of increasing rainfall in Israel. In particular, we explored whether the life history at the arid end of the gradient indicates adaptations to drought and unpredictable conditions, while adaptations to the highly competitive environment prevail at the mesic Mediterranean end. We examined several morphological and reproductive traits in four natural populations and in populations cultivated in standard common environment. Plants from arid environments were faster in phenological development, more branched in architecture and tended to maximize reproduction, while the Mediterranean plants invested mainly in vertical vegetative growth. Differences between cultivation and field in diaspore production were very large for arid populations as opposed to Mediterranean ones, indicating a larger potential to increase reproduction under favorable conditions. Our overall findings indicate two strongly opposing selective forces at the two extremes of the aridity gradient, which result in contrasting strategies within the studied annual plant species Y1 - 2006 UR - http://www3.interscience.wiley.com/journal/117966123/home U6 - https://doi.org/10.1111/j.2005.0906-7590.04310.x ER - TY - JOUR A1 - Tielbörger, Katja A1 - Kadmon, Ronen A1 - Müller, Monika A1 - Jeltsch, Florian T1 - Populationsdynamische Funktionen von Ausbreitung und Dormanz Y1 - 2000 ER - TY - JOUR A1 - Tielbörger, Katja A1 - Kadmon, Ronen A1 - Müller, Monika A1 - Jeltsch, Florian T1 - Raum-zeitliche Populationsdynamik von einjährigen Wüstenpflanzen Y1 - 2000 ER - TY - JOUR A1 - Jeltsch, Florian A1 - Tews, Jörg A1 - Brose, Ulrich A1 - Grimm, Volker A1 - Tielbörger, Katja A1 - Wichmann, Matthias A1 - Schwager, Monika T1 - Animal species diversity driven by habitat heterogeneity/diversity : the importance of keystone structures N2 - In a selected literature survey we reviewed studies on the habitat heterogeneity-animal species diversity relationship and evaluated whether there are uncertainties and biases in its empirical support. We reviewed 85 publications for the period 1960-2003. We screened each publication for terms that were used to define habitat heterogeneity, the animal species group and ecosystem studied, the definition of the structural variable, the measurement of vegetation structure and the temporal and spatial scale of the study. The majority of studies found a positive correlation between habitat heterogeneity/diversity and animal species diversity. However, empirical support for this relationship is drastically biased towards studies of vertebrates and habitats under anthropogenic influence. In this paper we show that ecological effects of habitat heterogeneity may vary considerably between species groups depending on whether structural attributes are perceived as heterogeneity or fragmentation. Possible effects may also vary relative to the structural variable measured. Based upon this, we introduce a classification framework that may be used for across-studies comparisons. Moreover, the effect of habitat heterogeneity for one species group may differ in relation to the spatial scale. In several studies, however, different species groups are closely linked to 'keystone structures' that determine animal species diversity by their presence. Detecting crucial keystone structures of the vegetation has profound implications for nature conservation and biodiversity management. Y1 - 2004 ER - TY - JOUR A1 - Jeltsch, Florian A1 - Blaum, Niels A1 - Brose, Ulrich A1 - Chipperfield, Joseph D. A1 - Clough, Yann A1 - Farwig, Nina A1 - Geissler, Katja A1 - Graham, Catherine H. A1 - Grimm, Volker A1 - Hickler, Thomas A1 - Huth, Andreas A1 - May, Felix A1 - Meyer, Katrin M. A1 - Pagel, Jörn A1 - Reineking, Björn A1 - Rillig, Matthias C. A1 - Shea, Katriona A1 - Schurr, Frank Martin A1 - Schroeder, Boris A1 - Tielbörger, Katja A1 - Weiss, Lina A1 - Wiegand, Kerstin A1 - Wiegand, Thorsten A1 - Wirth, Christian A1 - Zurell, Damaris T1 - How can we bring together empiricists and modellers in functional biodiversity research? JF - Basic and applied ecology : Journal of the Gesellschaft für Ökologie N2 - Improving our understanding of biodiversity and ecosystem functioning and our capacity to inform ecosystem management requires an integrated framework for functional biodiversity research (FBR). However, adequate integration among empirical approaches (monitoring and experimental) and modelling has rarely been achieved in FBR. We offer an appraisal of the issues involved and chart a course towards enhanced integration. A major element of this path is the joint orientation towards the continuous refinement of a theoretical framework for FBR that links theory testing and generalization with applied research oriented towards the conservation of biodiversity and ecosystem functioning. We further emphasize existing decision-making frameworks as suitable instruments to practically merge these different aims of FBR and bring them into application. This integrated framework requires joint research planning, and should improve communication and stimulate collaboration between modellers and empiricists, thereby overcoming existing reservations and prejudices. The implementation of this integrative research agenda for FBR requires an adaptation in most national and international funding schemes in order to accommodate such joint teams and their more complex structures and data needs. KW - Biodiversity theory KW - Biodiversity experiments KW - Conservation management KW - Decision-making KW - Ecosystem functions and services KW - Forecasting KW - Functional traits KW - Global change KW - Monitoring programmes KW - Interdisciplinarity Y1 - 2013 U6 - https://doi.org/10.1016/j.baae.2013.01.001 SN - 1439-1791 VL - 14 IS - 2 SP - 93 EP - 101 PB - Elsevier CY - Jena ER -