TY - JOUR A1 - Stübner, Konstanze A1 - Grujic, Djordje A1 - Dunkl, Istvan A1 - Thiede, Rasmus Christoph A1 - Eugster, Patricia T1 - Pliocene episodic exhumation and the significance of the Munsiari thrust in the northwestern Himalaya JF - Earth & planetary science letters N2 - The Himalayan thrust belt comprises three in-sequence foreland-propagating orogen-scale faults, the Main Central thrust, the Main Boundary thrust, and the Main Frontal thrust. Recently, the Munsiari–Ramgarh–Shumar thrust system has been recognized as an additional, potentially orogen-scale shear zone in the proximal footwall of the Main Central thrust. The timing of the Munsiari, Ramgarh, and Shumar thrusts and their role in Himalayan tectonics are disputed. We present 31 new zircon (U–Th)/He ages from a profile across the central Himachal Himalaya in the Beas River area. Within a ∼40 km wide belt northeast of the Kullu–Larji–Rampur window, ages ranging from to constrain a distinct episode of rapid Pliocene to Present exhumation; north and south of this belt, zircon (U–Th)/He ages are older ( to ). We attribute the Pliocene rapid exhumation episode to basal accretion to the Himalayan thrust belt and duplex formation in the Lesser Himalayan sequence including initiation of the Munsiari thrust. Pecube thermokinematic modelling suggests exhumation rates of ∼2–3 mm/yr from 4–7 to 0 Ma above the duplex contrasting with lower (<0.3 mm/yr) middle-late Miocene exhumation rates. The Munsiari thrust terminates laterally in central Himachal Pradesh. In the NW Indian Himalaya, the Main Central thrust zone comprises the sheared basal sections of the Greater Himalayan sequence and the mylonitic ‘Bajaura nappe’ of Lesser Himalayan affinity. We correlate the Bajaura unit with the Ramgarh thrust sheet in Nepal based on similar lithologies and the middle Miocene age of deformation. The Munsiari thrust in the central Himachal Himalaya is several Myr younger than deformation in the Bajaura and Ramgarh thrust sheets. Our results illustrate the complex and segmented nature of the Munsiari–Ramgarh–Shumar thrust system. KW - Himalaya KW - Himachal Pradesh KW - Munsiari thrust KW - thermochronology KW - thermokinematic modelling KW - Pliocene Y1 - 2017 U6 - https://doi.org/10.1016/j.epsl.2017.10.036 SN - 0012-821X SN - 1385-013X VL - 481 SP - 273 EP - 283 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Thiede, Rasmus Christoph A1 - Robert, Xavier A1 - Stuebner, Konstanze A1 - Dey, Saptarshi A1 - Faruhn, Johannes T1 - Sustained out-of-sequence shortening along a tectonically active segment of the Main Boundary thrust: The Dhauladhar Range in the northwestern Himalaya JF - Lithosphere N2 - Competing hypotheses suggest that Himalayan topography is sustained and the plate convergence is accommodated either solely along the basal decollement, the Main Himalayan thrust (MHT), or more broadly, across multiple thrust faults. In the past, structural, geomorphic, and geodetic data of the Nepalese Himalaya have been used to constrain the geometry of the MHT and its shallow frontal thrust fault, known as Main Frontal thrust (MFT). The MHT flattens at depth and connects to a hinterland mid-crustal, steeper thrust ramp, located similar to 100 km north of the deformation front. There, the present-day convergence across the Himalaya is mostly accommodated by slip along the MFT. Despite a general agreement that in Nepal most of the shortening is accommodated along the MHT, some researchers have suggested the occurrence of persistent out-of-sequence shortening on interior faults near the Main Central thrust (MCT). Along the northwest Himalaya, in contrast, some of these characteristics of central Nepal are missing, suggesting along-strike variation of wedge deformation and MHT fault geometry. Here we present new field observations and seven zircon (U-Th)/He (ZHe) cooling ages combined with existing low-temperature data sets. In agreement with our previous findings, we suggest that the transect of cooling age patterns across the frontal Dhauladhar Range reveals that the Main Boundary thrust (MBT) is a primary fault, which has uplifted and sustained this spectacular mountain front since at least the late Miocene. Our results suggest that the MBT forms an similar to 40-km-long fault ramp before it soles into the MHT, and motion along it has exhumed rocks from depth of similar to 8-10 km. New three-dimensional thermokinematic modeling (using Pecube finite-element code) reveals that the observed ZHe and apatite fission track cooling ages can only be explained by sustained mean MBT slip rates between similar to 2.6 and 3.5 mm a(-1) since at least 8 Ma, which corresponds to a horizontal shortening rate of similar to 1.7-2.4 mm a(-1). We propose that the MBT is active today, despite a lack of definitive field or seismogenic evidence, and continues to accommodate crustal shorting by out-of-sequence faulting. Assuming that present-day geodetic shorting rates (similar to 14 +/- 2 mm a(-1)) across the northwest Himalaya have been sustained over geologic time scales, this implies that the MBT accommodated similar to 15% of the total Himalayan convergence since its onset. Furthermore, our modeling results imply that the MHT is missing a hinterland mid-crustal ramp further north. Y1 - 2017 U6 - https://doi.org/10.1130/L630.1 SN - 1941-8264 SN - 1947-4253 VL - 9 SP - 715 EP - 725 PB - American Institute of Physics CY - Boulder ER -