TY - JOUR A1 - Xie, Zai-Lai A1 - Jelicic, Aleksandra A1 - Wang, Feipeng A1 - Rabu, Pierre A1 - Friedrich, Alwin A1 - Beuermann, Sabine A1 - Taubert, Andreas T1 - Transparent, flexible, and paramagnetic ionogels based on PMMA and the iron-based ionic liquid 1-butyl-3- methylimidazolium tetrachloroferrate(III) [Bmim][FeCl4] N2 - The iron-containing ionic liquid (IL) 1-butyl-3-methylimidazolium tetrachloroferrate(III) [Bmim][FeCl4] has been used as a building block in the synthesis of transparent, ion-conducting, and paramagnetic ionogels. UV/Vis spectroscopy shows that the coordination around the Fe(III) ion does slightly change upon incorporation of the IL into PMMA. The thermal stability of the PMMA increases significantly with IL incorporation. In particular, the onset weight loss observed at ca. 265 degrees C for pure PMMA is completely suppressed. The ionic conductivity shows a strong temperature dependence and increases with increasing IL weight fractions. The magnetic properties are similar to those reported for the pure IL and are not affected by the incorporation into the PMMA matrix. The resulting ionogel is thus an interesting prototype for soft, flexible, and transparent materials combining the mechanical properties of the matrix with the functionality of the metal-containing IL, such as magnetism. Y1 - 2010 UR - http://www.rsc.org/Publishing/Journals/jm/index.asp U6 - https://doi.org/10.1039/C0jm01733g SN - 0959-9428 ER - TY - JOUR A1 - Leroux, Fabrice A1 - Rabu, Pierre A1 - Sommerdijk, Nico A. J. M. A1 - Taubert, Andreas T1 - Two-Dimensional Hybrid Materials: Transferring Technology from Biology to Society JF - European journal of inorganic chemistry : a journal of ChemPubSoc Europe N2 - Hybrid materials are at the forefront of modern research and technology; hence a large number of publications on hybrid materials has already appeared in the scientific literature. This essay focuses on the specifics and peculiarities of hybrid materials based on two-dimensional (2D) building blocks and confinements, for two reasons: (1) 2D materials have a very broad field of application, but they also illustrate many of the scientific challenges the community faces, both on a fundamental and an application level; (2) all authors of this essay are involved in research on 2D materials, but their perspective and vision of how the field will develop in the future and how it is possible to benefit from these new developments are rooted in very different scientific subfields. The current article will thus present a personal, yet quite broad, account of how hybrid materials, specifically 2D hybrid materials, will provide means to aid modern societies in fields as different as healthcare and energy. Y1 - 2015 U6 - https://doi.org/10.1002/ejic.201500153 SN - 1434-1948 SN - 1099-0682 IS - 7 SP - 1089 EP - 1095 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Shkilnyy, Andriy A1 - Gräf, Ralph A1 - Hiebl, Bernhard A1 - Neffe, Axel T. A1 - Friedrich, Alwin A1 - Hartmann, Juergen A1 - Taubert, Andreas T1 - Unprecedented, low cytotoxicity of spongelike calcium phosphate/poly(ethylene imine) hydrogel composites N2 - Covalently crosslinked PEI hydrogels are efficient templates for calcium phosphate mineralization in SBF. In contrast to the PEI hydrogels, non-crosslinked PEI does not lead to calcium phosphate nucleation and growth in SBF. The precipitate is a mixture of brushite and hydroxyapatite. The PEI/calcium phosphate composite material exhibits a sponge like morphology and a chemical composition that is interesting for implants. Cytotoxicity tests using Dictyostelium discoideum amoebae show that both the non-mineralized and mineralized hydrogels have a very low cytotoxicity. This suggests that next generation PEI hydrogels, where also the degradation products are non-toxic, could be interesting for biomedical applications. Y1 - 2009 UR - http://www3.interscience.wiley.com/cgi-bin/jhome/77002860 U6 - https://doi.org/10.1002/mabi.200800266 SN - 1616-5187 ER - TY - JOUR A1 - Ugwuja, Chidinma G. A1 - Adelowo, Olawale O. A1 - Ogunlaja, Aemere A1 - Omorogie, Martins O. A1 - Olukanni, Olumide D. A1 - Ikhimiukor, Odion O. A1 - Iermak, Ievgeniia A1 - Kolawole, Gabriel A. A1 - Günter, Christina A1 - Taubert, Andreas A1 - Bodede, Olusola A1 - Moodley, Roshila A1 - Inada, Natalia M. A1 - Camargo, Andrea S.S. de A1 - Unuabonah, Emmanuel Iyayi T1 - Visible-Light-Mediated Photodynamic Water Disinfection @ Bimetallic-Doped Hybrid Clay Nanocomposites JF - ACS applied materials & interfaces N2 - This study reports a new class of photocatalytic hybrid clay nanocomposites prepared from low-cost sources (kaolinite clay and Carica papaya seeds) doped with Zn and Cu salts via a solvothermal process. X-ray diffraction analysis suggests that Cu-doping and Cu/Zn-doping introduce new phases into the crystalline structure of Kaolinite clay, which is linked to the reduced band gap of kaolinite from typically between 4.9 and 8.2 eV to 2.69 eV for Cu-doped and 1.5 eV for Cu/Zn hybrid clay nanocomposites (Nisar, J.; Arhammar, C.; Jamstorp, E.; Ahuja, R. Phys. Rev. B 2011, 84, 075120). In the presence of solar light irradiation, Cu- and Cu/Zn-doped nanocomposites facilitate the electron hole pair separation. This promotes the generation of singlet oxygen which in turn improves the water disinfection efficiencies of these novel nanocomposite materials. The nanocomposite materials were further characterized using high-resolution scanning electron microscopy, fluorimetry, therrnogravimetric analysis, and Raman spectroscopy. The breakthrough times of the nanocomposites for a fixed bed mode of disinfection of water contaminated with 2.32 x 10(7) cfu/mL E. coli ATCC 25922 under solar light irradiation are 25 h for Zn-doped, 30 h for Cu-doped, and 35 h for Cu/Zn-doped nanocomposites. In the presence of multidrug and multimetal resistant strains of E. coli, the breakthrough time decreases significantly. Zn-only doped nanocomposites are not photocatalytically active. In the absence of light, the nanocomposites are still effective in decontaminating water, although less efficient than under solar light irradiation. Electrostatic interaction, metal toxicity, and release of singlet oxygen (only in the Cu-doped and Cu/Zn-doped nanocomposites) are the three disinfection mechanisms by which these nanocomposites disinfect water. A regrowth study indicates the absence of any living E. coli cells in treated water even after 4 days. These data and the long hydraulic times (under gravity) exhibited by these nanocomposites during photodisinfection of water indicate an unusually high potential of these nanocomposites as efficient, affordable, and sustainable point-of-use systems for the disinfection of water in developing countries. KW - disinfection KW - nanocomposite material KW - multidrug-resistant Escherichia coli KW - water KW - reactive oxygen species Y1 - 2019 U6 - https://doi.org/10.1021/acsami.9b01212 SN - 1944-8244 SN - 1944-8252 VL - 11 IS - 28 SP - 25483 EP - 25494 PB - American Chemical Society CY - Washington, DC ER -