TY - JOUR A1 - Balischewski, Christian A1 - Behrens, Karsten A1 - Zehbe, Kerstin A1 - Günter, Christina A1 - Mies, Stefan A1 - Sperlich, Eric A1 - Kelling, Alexandra A1 - Taubert, Andreas T1 - Ionic liquids with more than one metal BT - optical and rlectrochemical properties versus d-block metal vombinations JF - Chemistry - a European journal N2 - Thirteen N-butylpyridinium salts, including three monometallic [C4Py](2)[MCl4], nine bimetallic [C4Py](2)[(M1-xMxCl4)-M-a-Cl-b] and one trimetallic compound [C4Py](2)[(M1-y-zMyMz (c) Cl4)-M-a-M-b] (M=Co, Cu, Mn; x=0.25, 0.50 or 0.75 and y=z=0.33), were synthesized and their structure and thermal and electrochemical properties were studied. All compounds are ionic liquids (ILs) with melting points between 69 and 93 degrees C. X-ray diffraction proves that all ILs are isostructural. The conductivity at room temperature is between 10(-4) and 10(-8) S cm(-1). Some Cu-based ILs reach conductivities of 10(-2) S cm(-1), which is, however, probably due to IL dec. This correlates with the optical bandgap measurements indicating the formation of large bandgap semiconductors. At elevated temperatures approaching the melting points, the conductivities reach up to 1.47x10(-1) S cm(-1) at 70 degrees C. The electrochemical stability windows of the ILs are between 2.5 and 3.0 V. KW - bandgap KW - electrochemistry KW - ionic liquids KW - metal-containing ionic KW - liquids KW - tetrahalido metallates Y1 - 2020 U6 - https://doi.org/10.1002/chem.202003097 SN - 0947-6539 SN - 1521-3765 VL - 26 IS - 72 SP - 17504 EP - 17513 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Schneider, Matthias A1 - Günter, Christina A1 - Taubert, Andreas T1 - Co-deposition of a hydrogel/calcium phosphate hybrid layer on 3D printed poly(lactic acid) scaffolds via dip coating BT - Towards Automated Biomaterials Fabrication JF - Polymers N2 - The article describes the surface modification of 3D printed poly(lactic acid) (PLA) scaffolds with calcium phosphate (CP)/gelatin and CP/chitosan hybrid coating layers. The presence of gelatin or chitosan significantly enhances CP co-deposition and adhesion of the mineral layer on the PLA scaffolds. The hydrogel/CP coating layers are fairly thick and the mineral is a mixture of brushite, octacalcium phosphate, and hydroxyapatite. Mineral formation is uniform throughout the printed architectures and all steps (printing, hydrogel deposition, and mineralization) are in principle amenable to automatization. Overall, the process reported here therefore has a high application potential for the controlled synthesis of biomimetic coatings on polymeric biomaterials. KW - 3D printing KW - dip-coating KW - poly(lactic acid) KW - PLA KW - calcium phosphate KW - gelatin KW - chitosan KW - hydrogel KW - calcium phosphate hybrid material KW - biomaterials Y1 - 2018 U6 - https://doi.org/10.3390/polym10030275 SN - 2073-4360 VL - 10 IS - 3 PB - MDPI CY - Basel ER - TY - JOUR A1 - Behrens, Karsten A1 - Balischewski, Christian A1 - Sperlich, Eric A1 - Menski, Antonia Isabell A1 - Balderas-Valadez, Ruth Fabiola A1 - Pacholski, Claudia A1 - Günter, Christina A1 - Lubahn, Susanne A1 - Kelling, Alexandra A1 - Taubert, Andreas T1 - Mixed chloridometallate(ii) ionic liquids with tunable color and optical response for potential ammonia sensors JF - RSC Advances N2 - Eight d-metal-containing N-butylpyridinium ionic liquids (ILs) with the nominal composition (C4Py)2[Ni0.5M0.5Cl4] or (C4Py)2[Zn0.5M0.5Cl4] (M = Cu, Co, Mn, Ni, Zn; C4Py = N-butylpyridinium) were synthesized, characterized, and investigated for their optical properties. Single crystal and powder X-ray analysis shows that the compounds are isostructural to existing examples based on other d-metal ions. Inductively coupled plasma optical emission spectroscopy measurements confirm that the metal/metal ratio is around 50 : 50. UV-Vis spectroscopy shows that the optical absorption can be tuned by selection of the constituent metals. Moreover, the compounds can act as an optical sensor for the detection of gases such as ammonia as demonstrated via a simple prototype setup. Y1 - 2022 U6 - https://doi.org/10.1039/d2ra05581c SN - 2046-2069 VL - 12 SP - 35072 EP - 35082 PB - RSC CY - London ER - TY - JOUR A1 - Balischewski, Christian A1 - Bhattacharyya, Biswajit A1 - Sperlich, Eric A1 - Günter, Christina A1 - Beqiraj, Alkit A1 - Klamroth, Tillmann A1 - Behrens, Karsten A1 - Mies, Stefan A1 - Kelling, Alexandra A1 - Lubahn, Susanne A1 - Holtzheimer, Lea A1 - Nitschke, Anne A1 - Taubert, Andreas T1 - Tetrahalidometallate(II) ionic liquids with more than one metal BT - the effect of bromide versus chloride JF - Chemistry - a European journal N2 - Fifteen N-butylpyridinium salts - five monometallic [C4Py](2)[MBr4] and ten bimetallic [C4Py](2)[(M0.5M0.5Br4)-M-a-Br-b] (M=Co, Cu, Mn, Ni, Zn) - were synthesized, and their structures and thermal and electrochemical properties were studied. All the compounds are ionic liquids (ILs) with melting points between 64 and 101 degrees C. Powder and single-crystal X-ray diffraction show that all ILs are isostructural. The electrochemical stability windows of the ILs are between 2 and 3 V. The conductivities at room temperature are between 10(-5) and 10(-6) S cm(-1). At elevated temperatures, the conductivities reach up to 10(-4) S cm(-1) at 70 degrees C. The structures and properties of the current bromide-based ILs were also compared with those of previous examples using chloride ligands, which illustrated differences and similarities between the two groups of ILs. KW - electrochemistry KW - ionic liquids KW - metal-containing ionic liquids; KW - N-butylpyridinium bromide KW - tetrahalidometallates Y1 - 2022 U6 - https://doi.org/10.1002/chem.202201068 SN - 1521-3765 VL - 28 IS - 64 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Mai, Tobias A1 - Boye, Susanne A1 - Yuan, Jiayin A1 - Völkel, Antje A1 - Gräwert, Marlies A1 - Günter, Christina A1 - Lederer, Albena A1 - Taubert, Andreas T1 - Poly(ethylene oxide)-based block copolymers with very high molecular weights for biomimetic calcium phosphate mineralization JF - RSC Advances : an international journal to further the chemical sciences N2 - The present article is among the first reports on the effects of poly(ampholyte)s and poly(betaine)s on the biomimetic formation of calcium phosphate. We have synthesized a series of di- and triblock copolymers based on a non-ionic poly(ethylene oxide) block and several charged methacrylate monomers, 2-(trimethylammonium)ethyl methacrylate chloride, 2-((3-cyanopropyl)-dimethylammonium)ethyl methacrylate chloride, 3-sulfopropyl methacrylate potassium salt, and [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide. The resulting copolymers are either positively charged, ampholytic, or betaine block copolymers. All the polymers have very high molecular weights of over 106 g mol−1. All polymers are water-soluble and show a strong effect on the precipitation and dissolution of calcium phosphate. The strongest effects are observed with triblock copolymers based on a large poly(ethylene oxide) middle block (nominal Mn = 100 000 g mol−1). Surprisingly, the data show that there is a need for positive charges in the polymers to exert tight control over mineralization and dissolution, but that the exact position of the charge in the polymer is of minor importance for both calcium phosphate precipitation and dissolution. Y1 - 2015 U6 - https://doi.org/10.1039/c5ra20035k SN - 2046-2069 IS - 5 SP - 103494 EP - 103505 PB - RSC Publishing CY - London ER - TY - JOUR A1 - Löbbicke, Ruben A1 - Chanana, Munish A1 - Schlaad, Helmut A1 - Pilz-Allen, Christine A1 - Günter, Christina A1 - Möhwald, Helmuth A1 - Taubert, Andreas T1 - Polymer Brush Controlled Bioinspired Calcium Phosphate Mineralization and Bone Cell Growth JF - Biomacromolecules : an interdisciplinary journal focused at the interface of polymer science and the biological sciences N2 - Polymer brushes on thiol-modified gold surfaces were synthesized by using terminal thiol groups for the surface initiated free radical polymerization of methacrylic acid and dimethylaminotheyl methacrylate, respectively. Atomic force microscopy shows that the resulting poly(methacrylic acid (PMAA) and poly(dimethylaminothyl methacrylate) (PDM- AEMA) brushes are homogeneous. Contact angle measurements show that the brushes are pH responsive and can reversibly be protonated and deprotonated. Mineralization of the brushes with calcium phosphate at different pH yields homogeneously mineralized surfaces, and preosteoblastic cells proliferate-on be number of living cells on the mineralized hybrid surface is ca. 3 times (P corresponding nonmineralized brushes. Y1 - 2011 U6 - https://doi.org/10.1021/bm200991b SN - 1525-7797 VL - 12 IS - 10 SP - 3753 EP - 3760 PB - American Chemical Society CY - Washington ER - TY - GEN A1 - Krüger, Stefanie A1 - Schwarze, Michael A1 - Baumann, Otto A1 - Günter, Christina A1 - Bruns, Michael A1 - Kübel, Christian A1 - Szabó, Dorothée Vinga A1 - Meinusch, Rafael A1 - de Zea Bermudez, Verónica A1 - Taubert, Andreas T1 - Bombyx mori silk/titania/gold hybrid materials for photocatalytic water splitting BT - combining renewable raw materials with clean fuels T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - The synthesis, structure, and photocatalytic water splitting performance of two new titania (TiO 2 )/gold(Au)/Bombyx mori silk hybrid materials are reported. All materials are monoliths with diameters of up to ca. 4.5 cm. The materials are macroscopically homogeneous and porous with surface areas between 170 and 210 m 2/g. The diameter of the TiO 2 nanoparticles (NPs) – mainly anatase with a minor fraction of brookite – and the Au NPs are on the order of 5 and 7–18 nm, respectively. Addition of poly(ethylene oxide) to the reaction mixture enables pore size tuning, thus providing access to different materials with different photocatalytic activities. Water splitting experiments using a sunlight simulator and a Xe lamp show that the new hybrid materials are effective water splitting catalysts and produce up to 30 mmol of hydrogen per 24 h. Overall the article demonstrates that the combination of a renewable and robust scaffold such as B. mori silk with a photoactive material provides a promising approach to new monolithic photocatalysts that can easily be recycled and show great potential for application in lightweight devices for green fuel production. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 581 KW - Bombyx mori silk KW - gold KW - photocatalytic water splitting KW - titania Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-423499 SN - 1866-8372 IS - 581 ER - TY - GEN A1 - Mai, Tobias A1 - Boye, Susanne A1 - Yuan, Jiayin A1 - Völkel, Antje A1 - Gräwert, Marlies A1 - Günter, Christina A1 - Lederer, Albena A1 - Taubert, Andreas T1 - Poly(ethylene oxide)-based block copolymers with very high molecular weights for biomimetic calcium phosphate mineralization N2 - The present article is among the first reports on the effects of poly(ampholyte)s and poly(betaine)s on the biomimetic formation of calcium phosphate. We have synthesized a series of di- and triblock copolymers based on a non-ionic poly(ethylene oxide) block and several charged methacrylate monomers, 2-(trimethylammonium)ethyl methacrylate chloride, 2-((3-cyanopropyl)-dimethylammonium)ethyl methacrylate chloride, 3-sulfopropyl methacrylate potassium salt, and [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide. The resulting copolymers are either positively charged, ampholytic, or betaine block copolymers. All the polymers have very high molecular weights of over 106 g mol−1. All polymers are water-soluble and show a strong effect on the precipitation and dissolution of calcium phosphate. The strongest effects are observed with triblock copolymers based on a large poly(ethylene oxide) middle block (nominal Mn = 100 000 g mol−1). Surprisingly, the data show that there is a need for positive charges in the polymers to exert tight control over mineralization and dissolution, but that the exact position of the charge in the polymer is of minor importance for both calcium phosphate precipitation and dissolution. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 208 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-85299 ER - TY - JOUR A1 - Hamed Misbah, Mohamed A1 - Santos, Mercedes A1 - Quintanilla, Luis A1 - Günter, Christina A1 - Alonso, Matilde A1 - Taubert, Andreas A1 - Carlos Rodriguez-Cabello, Jose T1 - Recombinant DNA technology and click chemistry: a powerful combination for generating a hybrid elastin-like-statherin hydrogel to control calcium phosphate mineralization JF - Beilstein journal of nanotechnology N2 - Understanding the mechanisms responsible for generating different phases and morphologies of calcium phosphate by elastin-like recombinamers is supreme for bioengineering of advanced multifunctional materials. The generation of such multifunctional hybrid materials depends on the properties of their counterparts and the way in which they are assembled. The success of this assembly depends on the different approaches used, such as recombinant DNA technology and click chemistry. In the present work, an elastin-like recombinamer bearing lysine amino acids distributed along the recombinamer chain has been cross-linked via Huisgen [2 + 3] cycloaddition. The recombinamer contains the SN(A)15 peptide domains inspired by salivary statherin, a peptide epitope known to specifically bind to and nucleate calcium phosphate. The benefit of using click chemistry is that the hybrid elastin-like-statherin recombinamers cross-link without losing their fibrillar structure. Mineralization of the resulting hybrid elastin-like-statherin recombinamer hydrogels with calcium phosphate is described. Thus, two different hydroxyapatite morphologies (cauliflower- and plate-like) have been formed. Overall, this study shows that crosslinking elastin-like recombinamers leads to interesting matrix materials for the generation of calcium phosphate composites with potential applications as biomaterials. KW - calcium phosphate KW - elastin-like recombinamers KW - hydroxyapatite KW - mineralization KW - SN(A)15 Y1 - 2017 U6 - https://doi.org/10.3762/bjnano.8.80 SN - 2190-4286 VL - 8 SP - 772 EP - 783 PB - Beilstein-Institut zur Förderung der Chemischen Wissenschaften CY - Frankfurt, Main ER - TY - JOUR A1 - Delahaye, Emilie A1 - Xie, Zailai A1 - Schäfer, Andreas A1 - Douce, Laurent A1 - Rogez, Guillaume A1 - Rabu, Pierre A1 - Günter, Christina A1 - Gutmann, Jochen S. A1 - Taubert, Andreas T1 - Intercalation synthesis of functional hybrid materials based on layered simple hydroxide hosts and ionic liquid guests - a pathway towards multifunctional ionogels without a silica matrix? JF - Dalton transactions : a journal of inorganic chemistry, including bioinorganic, organometallic, and solid-state chemistry N2 - Functional hybrid materials on the basis of inorganic hosts and ionic liquids (ILs) as guests hold promise for a virtually unlimited number of applications. In particular, the interaction and the combination of properties of a defined inorganic matrix and a specific IL could lead to synergistic effects in property selection and tuning. Such hybrid materials, generally termed ionogels, are thus an emerging topic in hybrid materials research. The current article addresses some of the recent developments and focuses on the question why silica is currently the dominating matrix used for (inorganic) ionogel fabrication. In comparison to silica, matrix materials such as layered simple hydroxides, layered double hydroxides, clay-type substances, magnetic or catalytically active solids, and many other compounds could be much more interesting because they themselves may carry useful functionalities, which could also be exploited for multifunctional hybrid materials synthesis. The current article combines experimental results with some arguments as to how new, advanced functional hybrid materials can be generated and which obstacles will need to be overcome to successfully achieve the synthesis of a desired target material. Y1 - 2011 U6 - https://doi.org/10.1039/c1dt10841g SN - 1477-9226 VL - 40 IS - 39 SP - 9977 EP - 9988 PB - Royal Society of Chemistry CY - Cambridge ER -