TY - JOUR A1 - Abdou, Nicole A1 - Alonso, Bruno A1 - Brun, Nicolas A1 - Landois, Perine A1 - Taubert, Andreas A1 - Hesemann, Peter A1 - Mehdi, Ahmad T1 - Ionic guest in ionic host BT - ionosilica ionogel composites via ionic liquid confinement in ionosilica supports JF - Materials chemistry frontiers N2 - Ionosilica ionogels, i.e. composites consisting of an ionic liquid (IL) guest confined in an ionosilica host matrix, were synthesized via a non-hydrolytic sol-gel procedure from a tris-trialcoxysilylated amine precursor using the IL [BMIM]NTf2 as solvent. Various ionosilica ionogels were prepared starting from variable volumes of IL in the presence of formic acid. The resulting brittle and nearly colourless monoliths are composed of different amounts of IL guests confined in an ionosilica host as evidenced via thermogravimetric analysis, FT-IR, and C-13 CP-MAS solid-state NMR spectroscopy. In the following, we focused on confinement effects between the ionic host and guest. Special host-guest interactions between the IL guest and the ionosilica host were evidenced by H-1 solid-state NMR, Raman spectroscopy, and broadband dielectric spectroscopy (BDS) measurements. The three techniques indicate a strongly reduced ion mobility in the ionosilica ionogel composites containing small volume fractions of confined IL, compared to conventional silica-based ionogels. We conclude that the ionic ionosilica host stabilizes an IL layer on the host surface; this then results in a strongly reduced ion mobility compared to conventional silica hosts. The ion mobility progressively increases for systems containing higher volume fractions of IL and finally reaches the values observed in conventional silica based ionogels. These results therefore point towards strong interactions and confinement effects between the ionic host and the ionic guest on the ionosilica surface. Furthermore, this approach allows confining high volume fractions of IL into self-standing monoliths while preserving high ionic conductivity. These effects may be of interest in domains where IL phases must be anchored on solid supports to avoid leaching or IL spilling, e.g., in catalysis, in gas separation/sequestration devices or for the elaboration of solid electrolytes for (lithium-ion) batteries and supercapacitors. Y1 - 2022 U6 - https://doi.org/10.1039/d2qm00021k SN - 2052-1537 VL - 6 IS - 7 SP - 939 EP - 947 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Abouserie, Ahed A1 - Schilde, Uwe A1 - Taubert, Andreas T1 - The crystal structure of N-butylpyridinium bis(μ2-dichlorido)-tetrachloridodicopper(II), C₁₈H₂₈N₂Cu₂Cl₆ JF - Zeitschrift für Kristallographie - New Crystal Structures N2 - C₉H₁₄Cl₃CuN, monoclinic, P2₁/n (no. 14), a = 9.6625(6) Å, b = 9.3486(3) Å, c = 14.1168(8) Å, β = 102.288(5)°, V = 1245.97(11) ų, Z = 4, Rgₜ(F) = 0.0182, wRᵣₑf(F²) = 0.0499, T = 210(2) K. KW - Ionic Liquid Precursor KW - Thermochromism KW - Salts KW - Nanostructures KW - Catalysis KW - Solvents KW - Complex KW - Gas Y1 - 2018 U6 - https://doi.org/10.1515/NCRS-2018-0099 SN - 2194-4946 SN - 2196-7105 VL - 233 IS - 4 SP - 743 EP - 746 PB - de Gruyter CY - Berlin und München ER - TY - GEN A1 - Abouserie, Ahed A1 - Schilde, Uwe A1 - Taubert, Andreas T1 - The crystal structure of N-butylpyridinium bis(μ2-dichlorido)-tetrachloridodicopper(II), C₁₈H₂₈N₂Cu₂Cl₆ T2 - Zeitschrift für Kristallographie - New Crystal Structures N2 - C₉H₁₄Cl₃CuN, monoclinic, P2₁/n (no. 14), a = 9.6625(6) Å, b = 9.3486(3) Å, c = 14.1168(8) Å, β = 102.288(5)°, V = 1245.97(11) ų, Z = 4, Rgₜ(F) = 0.0182, wRᵣₑf(F²) = 0.0499, T = 210(2) K. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 465 KW - Ionic Liquid Precursor KW - Thermochromism KW - Salts KW - Nanostructures KW - Catalysis KW - Solvents KW - Complex KW - Gas Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-417310 ER - TY - JOUR A1 - Abouserie, Ahed A1 - Zehbe, Kerstin A1 - Metzner, Philipp A1 - Kelling, Alexandra A1 - Günter, Christina A1 - Schilde, Uwe A1 - Strauch, Peter A1 - Körzdörfer, Thomas A1 - Taubert, Andreas T1 - Alkylpyridinium Tetrahalidometallate Ionic Liquids and Ionic Liquid Crystals: Insights into the Origin of Their Phase Behavior JF - European journal of inorganic chemistry : a journal of ChemPubSoc Europe N2 - Six N-alkylpyridinium salts [CnPy](2)[MCl4] (n = 4 or 12 and M = Co, Cu, Zn) were synthesized, and their structure and thermal properties were studied. The [C4Py](2)[MCl4] compounds are monoclinic and crystallize in the space group P2(1)/n. The crystals of the longer chain analogues [C12Py](2)[MCl4] are triclinic and crystallize in the space group P (1) over bar. Above the melting temperature, all compounds are ionic liquids (ILs). The derivatives with the longer C12 chain exhibit liquid crystallinity and the shorter chain compounds only show a melting transition. Consistent with single-crystal analysis, electron paramagnetic resonance spectroscopy suggests that the [CuCl4](2-) ions in the Cu-based ILs have a distorted tetrahedral geometry. KW - Ionic liquids KW - Alkylpyridinium salts KW - Structure elucidation KW - Phase transitions Y1 - 2017 U6 - https://doi.org/10.1002/ejic.201700826 SN - 1434-1948 SN - 1099-0682 SP - 5640 EP - 5649 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Abouserie, Ahed A1 - Zehbe, Kerstin A1 - Metzner, Philipp A1 - Kelling, Alexandra A1 - Günter, Christina A1 - Schilde, Uwe A1 - Strauch, Peter A1 - Körzdörfer, Thomas A1 - Taubert, Andreas T1 - Alkylpyridinium Tetrahalidometallate Ionic Liquids and Ionic Liquid Crystals: Insights into the Origin of Their Phase Behavior JF - European journal of inorganic chemistry : a journal of ChemPubSoc Europe N2 - Six N-alkylpyridinium salts [CnPy](2)[MCl4] (n = 4 or 12 and M = Co, Cu, Zn) were synthesized, and their structure and thermal properties were studied. The [C4Py](2)[MCl4] compounds are monoclinic and crystallize in the space group P2(1)/n. The crystals of the longer chain analogues [C12Py](2)[MCl4] are triclinic and crystallize in the space group P (1) over bar. Above the melting temperature, all compounds are ionic liquids (ILs). The derivatives with the longer C12 chain exhibit liquid crystallinity and the shorter chain compounds only show a melting transition. Consistent with single-crystal analysis, electron paramagnetic resonance spectroscopy suggests that the [CuCl4](2-) ions in the Cu-based ILs have a distorted tetrahedral geometry. KW - Ionic liquids KW - Alkylpyridinium salts KW - Structure elucidation KW - Phase transitions Y1 - 2017 U6 - https://doi.org/10.1002/ejic.201700826 SN - 1434-1948 SN - 1099-0682 SP - 5640 EP - 5649 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Adesina, Morenike O. A1 - Block, Inga A1 - Günter, Christina A1 - Unuabonah, Emmanuel Iyayi A1 - Taubert, Andreas T1 - Efficient Removal of Tetracycline and Bisphenol A from Water with a New Hybrid Clay/TiO2 Composite JF - ACS Omega N2 - New TiO2 hybrid composites were prepared fromkaolinclay, predried and carbonized biomass, and titanium tetraisopropoxideand explored for tetracycline (TET) and bisphenol A (BPA) removalfrom water. Overall, the removal rate is 84% for TET and 51% for BPA.The maximum adsorption capacities (q (m))are 30 and 23 mg/g for TET and BPA, respectively. These capacitiesare far greater than those obtained for unmodified TiO2. Increasing the ionic strength of the solution does not change theadsorption capacity of the adsorbent. pH changes only slightly changeBPA adsorption, while a pH > 7 significantly reduces the adsorptionof TET on the material. The Brouers-Sotolongo fractal modelbest describes the kinetic data for both TET and BPA adsorption, predictingthat the adsorption process occurs via a complex mechanism involvingvarious forces of attraction. Temkin and Freundlich isotherms, whichbest fit the equilibrium adsorption data for TET and BPA, respectively,suggest that adsorption sites are heterogeneous in nature. Overall,the composite materials are much more effective for TET removal fromaqueous solution than for BPA. This phenomenon is assigned to a differencein the TET/adsorbent interactions vs the BPA/adsorbent interactions:the decisive factor appears to be favorable electrostatic interactionsfor TET yielding a more effective TET removal. Y1 - 2023 U6 - https://doi.org/10.1021/acsomega.3c00184 SN - 2470-1343 VL - 8 IS - 24 SP - 21594 EP - 21604 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Ayi, Ayi A. A1 - Khare, Varsha A1 - Strauch, Peter A1 - Girard, Jèrôme A1 - Fromm, Katharina M. A1 - Taubert, Andreas T1 - On the chemical synthesis of titanium nanoparticles from ionic liquids N2 - We report on attempts towards the synthesis of titanium nanoparticles using a wet chemical approach in imidazolium-based ionic liquids (ILs) under reducing conditions. Transmission electron microscopy finds nanoparticles in all cases. UV/Vis spectroscopy confirms the nanoparticulate nature of the precipitate, as in all cases an absorption band between ca. 280 and 300 nm is visible. IR spectroscopy shows that even after extensive washing and drying, some IL remains adsorbed on the nanoparticles. Raman spectroscopy suggests the formation of anatase nanoparticles, but X-ray diffraction reveals that, possibly, amorphous titania forms or that the nanoparticles are so small that a clear structure assignment is not possible. The report thus shows that (possibly amorphous) titanium oxides even form under reducing conditions and that the chemical synthesis of titanium nanoparticles in ILs remains elusive. Y1 - 2010 UR - http://www.springerlink.com/content/101572 U6 - https://doi.org/10.1007/s00706-010-0403-4 SN - 0026-9247 ER - TY - JOUR A1 - Bagdahn, Christian A1 - Taubert, Andreas T1 - Ionogel fiber mats - functional materials via electrospinning of PMMA and the ionic liquid bis(1-butyl-3-methyl-imidazolium) Tetrachloridocuprate(II), [Bmim](2)[CuCl4] JF - Zeitschrift für Naturforschung : B, Chemical sciences N2 - Ionogel fiber mats were made by electrospinning poly(methylmethacrylate) (PMMA) and the ionic liquid (IL) bis(1-butyl-3-methyl-imidazolium) tetrachloridocupraten, [Bmim](2)[CuCl4], from acetone. The morphology of the electrospun ionogels strongly depends on the spinning parameters. Dense and uniform fiber mats were only obtained at concentrations of 60 to 70 g of polymer and IL mass combined. Lower concentrations led to a low number of poorly defined fibers. High voltages of 20 to 25 kV led to well-defined and uniform fibers; voltages between 15 and 20 kV again led to less uniform and less dense fibers. At 10 kV and lower, no spinning could be induced. Finally, PMMA fibers electrospun without IL show a less well-defined morphology combining fibers and oblong droplets indicating that the IL has a beneficial effect on the electrospinning process. The resulting materials are prototypes for new functional materials, for example in sterile filtration. KW - Ionic Liquid KW - Ionogel KW - Electrospinning KW - Fiber KW - Hydrogen Production KW - Filtration Y1 - 2013 U6 - https://doi.org/10.5560/ZNB.2013-3195 SN - 0932-0776 SN - 1865-7117 VL - 68 IS - 10 SP - 1163 EP - 1171 PB - De Gruyter CY - Tübingen ER - TY - JOUR A1 - Balischewski, Christian A1 - Behrens, Karsten A1 - Zehbe, Kerstin A1 - Günter, Christina A1 - Mies, Stefan A1 - Sperlich, Eric A1 - Kelling, Alexandra A1 - Taubert, Andreas T1 - Ionic liquids with more than one metal BT - optical and rlectrochemical properties versus d-block metal vombinations JF - Chemistry - a European journal N2 - Thirteen N-butylpyridinium salts, including three monometallic [C4Py](2)[MCl4], nine bimetallic [C4Py](2)[(M1-xMxCl4)-M-a-Cl-b] and one trimetallic compound [C4Py](2)[(M1-y-zMyMz (c) Cl4)-M-a-M-b] (M=Co, Cu, Mn; x=0.25, 0.50 or 0.75 and y=z=0.33), were synthesized and their structure and thermal and electrochemical properties were studied. All compounds are ionic liquids (ILs) with melting points between 69 and 93 degrees C. X-ray diffraction proves that all ILs are isostructural. The conductivity at room temperature is between 10(-4) and 10(-8) S cm(-1). Some Cu-based ILs reach conductivities of 10(-2) S cm(-1), which is, however, probably due to IL dec. This correlates with the optical bandgap measurements indicating the formation of large bandgap semiconductors. At elevated temperatures approaching the melting points, the conductivities reach up to 1.47x10(-1) S cm(-1) at 70 degrees C. The electrochemical stability windows of the ILs are between 2.5 and 3.0 V. KW - bandgap KW - electrochemistry KW - ionic liquids KW - metal-containing ionic KW - liquids KW - tetrahalido metallates Y1 - 2020 U6 - https://doi.org/10.1002/chem.202003097 SN - 0947-6539 SN - 1521-3765 VL - 26 IS - 72 SP - 17504 EP - 17513 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Balischewski, Christian A1 - Bhattacharyya, Biswajit A1 - Sperlich, Eric A1 - Günter, Christina A1 - Beqiraj, Alkit A1 - Klamroth, Tillmann A1 - Behrens, Karsten A1 - Mies, Stefan A1 - Kelling, Alexandra A1 - Lubahn, Susanne A1 - Holtzheimer, Lea A1 - Nitschke, Anne A1 - Taubert, Andreas T1 - Tetrahalidometallate(II) ionic liquids with more than one metal BT - the effect of bromide versus chloride JF - Chemistry - a European journal N2 - Fifteen N-butylpyridinium salts - five monometallic [C4Py](2)[MBr4] and ten bimetallic [C4Py](2)[(M0.5M0.5Br4)-M-a-Br-b] (M=Co, Cu, Mn, Ni, Zn) - were synthesized, and their structures and thermal and electrochemical properties were studied. All the compounds are ionic liquids (ILs) with melting points between 64 and 101 degrees C. Powder and single-crystal X-ray diffraction show that all ILs are isostructural. The electrochemical stability windows of the ILs are between 2 and 3 V. The conductivities at room temperature are between 10(-5) and 10(-6) S cm(-1). At elevated temperatures, the conductivities reach up to 10(-4) S cm(-1) at 70 degrees C. The structures and properties of the current bromide-based ILs were also compared with those of previous examples using chloride ligands, which illustrated differences and similarities between the two groups of ILs. KW - electrochemistry KW - ionic liquids KW - metal-containing ionic liquids; KW - N-butylpyridinium bromide KW - tetrahalidometallates Y1 - 2022 U6 - https://doi.org/10.1002/chem.202201068 SN - 1521-3765 VL - 28 IS - 64 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Balischewski, Christian A1 - Choi, Hyung-Seok A1 - Behrens, Karsten A1 - Beqiraj, Alkit A1 - Körzdörfer, Thomas A1 - Gessner, Andre A1 - Wedel, Armin A1 - Taubert, Andreas T1 - Metal sulfide nanoparticle synthesis with ionic liquids state of the art and future perspectives JF - ChemistryOpen N2 - Metal sulfides are among the most promising materials for a wide variety of technologically relevant applications ranging from energy to environment and beyond. Incidentally, ionic liquids (ILs) have been among the top research subjects for the same applications and also for inorganic materials synthesis. As a result, the exploitation of the peculiar properties of ILs for metal sulfide synthesis could provide attractive new avenues for the generation of new, highly specific metal sulfides for numerous applications. This article therefore describes current developments in metal sulfide nano-particle synthesis as exemplified by a number of highlight examples. Moreover, the article demonstrates how ILs have been used in metal sulfide synthesis and discusses the benefits of using ILs over more traditional approaches. Finally, the article demonstrates some technological challenges and how ILs could be used to further advance the production and specific property engineering of metal sulfide nanomaterials, again based on a number of selected examples. KW - Ionic liquids KW - ionic liquid crystals KW - ionic liquid precursors KW - metal KW - sulfides KW - catalysis KW - electrochemistry KW - energy materials KW - LED KW - solar KW - cells Y1 - 2021 U6 - https://doi.org/10.1002/open.202000357 SN - 2191-1363 VL - 10 IS - 2 SP - 272 EP - 295 PB - Wiley-VCH CY - Weinheim ER - TY - GEN A1 - Behrens, Karsten A1 - Balischewski, Christian A1 - Sperlich, Eric A1 - Menski, Antonia Isabell A1 - Balderas-Valadez, Ruth Fabiola A1 - Pacholski, Claudia A1 - Günter, Christina A1 - Lubahn, Susanne A1 - Kelling, Alexandra A1 - Taubert, Andreas T1 - Mixed chloridometallate(ii) ionic liquids with tunable color and optical response for potential ammonia sensors T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Eight d-metal-containing N-butylpyridinium ionic liquids (ILs) with the nominal composition (C4Py)2[Ni0.5M0.5Cl4] or (C4Py)2[Zn0.5M0.5Cl4] (M = Cu, Co, Mn, Ni, Zn; C4Py = N-butylpyridinium) were synthesized, characterized, and investigated for their optical properties. Single crystal and powder X-ray analysis shows that the compounds are isostructural to existing examples based on other d-metal ions. Inductively coupled plasma optical emission spectroscopy measurements confirm that the metal/metal ratio is around 50 : 50. UV-Vis spectroscopy shows that the optical absorption can be tuned by selection of the constituent metals. Moreover, the compounds can act as an optical sensor for the detection of gases such as ammonia as demonstrated via a simple prototype setup. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1316 Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-587512 SN - 1866-8372 IS - 1316 SP - 35072 EP - 35082 ER - TY - JOUR A1 - Behrens, Karsten A1 - Balischewski, Christian A1 - Sperlich, Eric A1 - Menski, Antonia Isabell A1 - Balderas-Valadez, Ruth Fabiola A1 - Pacholski, Claudia A1 - Günter, Christina A1 - Lubahn, Susanne A1 - Kelling, Alexandra A1 - Taubert, Andreas T1 - Mixed chloridometallate(ii) ionic liquids with tunable color and optical response for potential ammonia sensors JF - RSC Advances N2 - Eight d-metal-containing N-butylpyridinium ionic liquids (ILs) with the nominal composition (C4Py)2[Ni0.5M0.5Cl4] or (C4Py)2[Zn0.5M0.5Cl4] (M = Cu, Co, Mn, Ni, Zn; C4Py = N-butylpyridinium) were synthesized, characterized, and investigated for their optical properties. Single crystal and powder X-ray analysis shows that the compounds are isostructural to existing examples based on other d-metal ions. Inductively coupled plasma optical emission spectroscopy measurements confirm that the metal/metal ratio is around 50 : 50. UV-Vis spectroscopy shows that the optical absorption can be tuned by selection of the constituent metals. Moreover, the compounds can act as an optical sensor for the detection of gases such as ammonia as demonstrated via a simple prototype setup. Y1 - 2022 U6 - https://doi.org/10.1039/d2ra05581c SN - 2046-2069 VL - 12 SP - 35072 EP - 35082 PB - RSC CY - London ER - TY - GEN A1 - Bhattacharyya, Biswajit A1 - Balischewski, Christian A1 - Sperlich, Eric A1 - Günter, Christina A1 - Mies, Stefan A1 - Kelling, Alexandra A1 - Taubert, Andreas T1 - N-Butyl Pyridinium Diiodido Argentate(I) BT - A One-Dimensional Ag-I Network with Superior Solid-State Ionic Conductivity at Room Temperature T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - A new solid-state material, N-butyl pyridinium diiodido argentate(I), is synthesized using a simple and effective one-pot approach. In the solid state, the compound exhibits 1D ([AgI2](-))(n) chains that are stabilized by the N-butyl pyridinium cation. The 1D structure is further manifested by the formation of long, needle-like crystals, as revealed from electron microscopy. As the general composition is derived from metal halide-based ionic liquids, the compound has a low melting point of 100-101 degrees C, as confirmed by differential scanning calorimetry. Most importantly, the compound has a conductivity of 10(-6) S cm(-1) at room temperature. At higher temperatures the conductivity increases and reaches to 10(-4 )S cm(-1) at 70 degrees C. In contrast to AgI, however, the current material has a highly anisotropic 1D arrangement of the ionic domains. This provides direct and tuneable access to fast and anisotropic ionic conduction. The material is thus a significant step forward beyond current ion conductors and a highly promising prototype for the rational design of highly conductive ionic solid-state conductors for battery or solar cell applications. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1341 KW - AgI KW - ionic conductivity KW - Ionic liquids KW - thermal properties Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-604874 SN - 1866-8372 IS - 1341 ER - TY - JOUR A1 - Bhattacharyya, Biswajit A1 - Balischewski, Christian A1 - Sperlich, Eric A1 - Günter, Christina A1 - Mies, Stefan A1 - Kelling, Alexandra A1 - Taubert, Andreas T1 - N-Butyl Pyridinium Diiodido Argentate(I) BT - A One-Dimensional Ag-I Network with Superior Solid-State Ionic Conductivity at Room Temperature JF - Advanced materials interfaces N2 - A new solid-state material, N-butyl pyridinium diiodido argentate(I), is synthesized using a simple and effective one-pot approach. In the solid state, the compound exhibits 1D ([AgI2](-))(n) chains that are stabilized by the N-butyl pyridinium cation. The 1D structure is further manifested by the formation of long, needle-like crystals, as revealed from electron microscopy. As the general composition is derived from metal halide-based ionic liquids, the compound has a low melting point of 100-101 degrees C, as confirmed by differential scanning calorimetry. Most importantly, the compound has a conductivity of 10(-6) S cm(-1) at room temperature. At higher temperatures the conductivity increases and reaches to 10(-4 )S cm(-1) at 70 degrees C. In contrast to AgI, however, the current material has a highly anisotropic 1D arrangement of the ionic domains. This provides direct and tuneable access to fast and anisotropic ionic conduction. The material is thus a significant step forward beyond current ion conductors and a highly promising prototype for the rational design of highly conductive ionic solid-state conductors for battery or solar cell applications. KW - AgI KW - ionic conductivity KW - Ionic liquids KW - thermal properties Y1 - 2023 U6 - https://doi.org/10.1002/admi.202202363 SN - 2196-7350 VL - 10 IS - 12 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Bleek, Katrin A1 - Taubert, Andreas T1 - New developments in polymer-controlled, bioinspired calcium phosphate mineralization from aqueous solution JF - Acta biomaterialia N2 - The polymer-controlled and bioinspired precipitation of inorganic minerals from aqueous solution at near-ambient or physiological conditions avoiding high temperatures or organic solvents is a key research area in materials science. Polymer-controlled mineralization has been studied as a model for biomineralization and for the synthesis of (bioinspired and biocompatible) hybrid materials for a virtually unlimited number of applications. Calcium phosphate mineralization is of particular interest for bone and dental repair. Numerous studies have therefore addressed the mineralization of calcium phosphate using a wide variety of low- and high-molecular-weight additives. In spite of the growing interest and increasing number of experimental and theoretical data, the mechanisms of polymer-controlled calcium phosphate mineralization are not entirely clear to date, although the field has made significant progress in the last years. A set of elegant experiments and calculations has shed light on some details of mineral formation, but it is currently not possible to preprogram a mineralization reaction to yield a desired product for a specific application. The current article therefore summarizes and discusses the influence of (macro)molecular entities such as polymers, peptides, proteins and gels on biomimetic calcium phosphate mineralization from aqueous solution. It focuses on strategies to tune the kinetics, morphologies, final dimensions and crystal phases of calcium phosphate, as well as on mechanistic considerations. KW - Calcium phosphate KW - Biomimetics KW - Mineralization KW - Polymers KW - Bioinspired Y1 - 2013 U6 - https://doi.org/10.1016/j.actbio.2012.12.027 SN - 1742-7061 SN - 1878-7568 VL - 9 IS - 5 SP - 6283 EP - 6321 PB - Elsevier CY - Oxford ER - TY - GEN A1 - Bleek, Katrin A1 - Taubert, Andreas T1 - New developments in polymer-controlled, bio-inspired calcium phosphate mineralization from aqueous solution T2 - Acta biomaterialia Y1 - 2013 U6 - https://doi.org/10.1016/j.actbio.2013.05.007 SN - 1742-7061 VL - 9 IS - 9 SP - 8466 EP - 8466 PB - Elsevier CY - Oxford ER - TY - GEN A1 - Block, Inga A1 - Günter, Christina A1 - Rodrigues, Alysson Duarte A1 - Paasch, Silvia A1 - Hesemann, Peter A1 - Taubert, Andreas T1 - Carbon Adsorbents from Spent Coffee for Removal of Methylene Blue and Methyl Orange from Water T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Activated carbons (ACs) were prepared from dried spent coffee (SCD), a biological waste product, to produce adsorbents for methylene blue (MB) and methyl orange (MO) from aqueous solution. Pre-pyrolysis activation of SCD was achieved via treatment of the SCD with aqueous sodium hydroxide solutions at 90 °C. Pyrolysis of the pretreated SCD at 500 °C for 1 h produced powders with typical characteristics of AC suitable and effective for dye adsorption. As an alternative to the rather harsh base treatment, calcium carbonate powder, a very common and abundant resource, was also studied as an activator. Mixtures of SCD and CaCO3 (1:1 w/w) yielded effective ACs for MO and MB removal upon pyrolysis needing only small amounts of AC to clear the solutions. A selectivity of the adsorption process toward anionic (MO) or cationic (MB) dyes was not observed. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1155 KW - water KW - spent coffee KW - dye adsorption KW - methylene blue KW - methyl orange KW - calcium carbonate KW - activated carbon KW - water treatment KW - dye removal Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-521653 SN - 1866-8372 IS - 14 ER - TY - JOUR A1 - Block, Inga A1 - Günter, Christina A1 - Rodrigues, Alysson Duarte A1 - Paasch, Silvia A1 - Hesemann, Peter A1 - Taubert, Andreas T1 - Carbon Adsorbents from Spent Coffee for Removal of Methylene Blue and Methyl Orange from Water JF - Materials N2 - Activated carbons (ACs) were prepared from dried spent coffee (SCD), a biological waste product, to produce adsorbents for methylene blue (MB) and methyl orange (MO) from aqueous solution. Pre-pyrolysis activation of SCD was achieved via treatment of the SCD with aqueous sodium hydroxide solutions at 90 °C. Pyrolysis of the pretreated SCD at 500 °C for 1 h produced powders with typical characteristics of AC suitable and effective for dye adsorption. As an alternative to the rather harsh base treatment, calcium carbonate powder, a very common and abundant resource, was also studied as an activator. Mixtures of SCD and CaCO3 (1:1 w/w) yielded effective ACs for MO and MB removal upon pyrolysis needing only small amounts of AC to clear the solutions. A selectivity of the adsorption process toward anionic (MO) or cationic (MB) dyes was not observed. KW - water KW - spent coffee KW - dye adsorption KW - methylene blue KW - methyl orange KW - calcium carbonate KW - activated carbon KW - water treatment KW - dye removal Y1 - 2021 U6 - https://doi.org/10.3390/ma14143996 SN - 1996-1944 VL - 14 IS - 14 PB - MDPI CY - Basel ER - TY - INPR A1 - Bühler, Markus J. A1 - Rabu, Pierre A1 - Taubert, Andreas T1 - Advanced hybrid materials - design and applications T2 - European journal of inorganic chemistry : a journal of ChemPubSoc Europe Y1 - 2012 U6 - https://doi.org/10.1002/ejic.201201263 SN - 1434-1948 IS - 32 SP - 5092 EP - 5093 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Casse, Olivier A1 - Shkilnyy, Andriy A1 - Linders, Jürgen A1 - Mayer, Christian A1 - Häussinger, Daniel A1 - Völkel, Antje A1 - Thünemann, Andreas F. A1 - Dimova, Rumiana A1 - Cölfen, Helmut A1 - Meier, Wolfgang P. A1 - Schlaad, Helmut A1 - Taubert, Andreas T1 - Solution behavior of double-hydrophilic block copolymers in dilute aqueous solution JF - Macromolecules : a publication of the American Chemical Society N2 - The self-assembly of double-hydrophilic poly(ethylene oxide)-poly(2-methyl-2-oxazoline) diblock copolymers in water has been studied. Isothermal titration calorimetry, small-angle X-ray scattering, and analytical ultracentrifugation suggest that only single polymer chains are present in solution. In contrast, light scattering and transmission electron microscopy detect aggregates with radii of ca. 100 nm. Pulsed field gradient NMR spectroscopy confirms the presence of aggregates, although only 2% of the polymer chains undergo aggregation. Water uptake experiments indicate differences in the hydrophilicity of the two blocks, which is believed to be the origin of the unexpected aggregation behavior (in accordance with an earlier study by Ke et al. [Macromolecules 2009, 42, 5339-5344]). The data therefore suggest that even in double-hydrophilic block copolymers, differences in hydrophilicity are sufficient to drive polymer aggregation, a phenomenon that has largely been overlooked or ignored so far. Y1 - 2012 U6 - https://doi.org/10.1021/ma300621g SN - 0024-9297 VL - 45 IS - 11 SP - 4772 EP - 4777 PB - American Chemical Society CY - Washington ER - TY - GEN A1 - de Zea Bermudez, Veronica A1 - Leroux, Fabrice A1 - Rabu, Pierre A1 - Taubert, Andreas T1 - Hybrid nanomaterials: from the laboratory to the market T2 - Beilstein journal of nanotechnology KW - hybrid nanomaterials Y1 - 2017 U6 - https://doi.org/10.3762/bjnano.8.87 SN - 2190-4286 VL - 8 SP - 861 EP - 862 PB - Beilstein-Institut zur Förderung der Chemischen Wissenschaften CY - Frankfurt, Main ER - TY - JOUR A1 - Delahaye, Emilie A1 - Goebel, Ronald A1 - Loebbicke, Ruben A1 - Guillot, Regis A1 - Sieber, Christoph A1 - Taubert, Andreas T1 - Silica ionogels for proton transport JF - Journal of materials chemistry N2 - A number of ionogels - silica-ionic liquid (IL) hybrid materials - were synthesized and studied for their ionic conductivity. The materials are based on a sulfonated IL, 1-methyl-3-(3-sulfopropyl-)-imidazolium p-toluenesulfonate, [PmimSO(3)H][PTS], which contains a sulfonic acid/sulfonate group both in the IL anion and in the side chain of the IL cation. By way of the sulfonate-sulfonic acid proton transfer, the IL imparts the ionogel with a high ionic conductivity of ca. 10(-2) S cm(-1) in the as-synthesized state at 120 degrees C and 10(-3) S cm(-1) in the dry state at 120 degrees C. The ionogels are stable up to ca. 150 degrees C in dynamic thermogravimetric analysis. This suggests that these materials, which are relatively cheap and easily fabricated, could find application in fuel cells in intermediate temperature ranges where many other membrane materials are not suitable. Y1 - 2012 U6 - https://doi.org/10.1039/c2jm00037g SN - 0959-9428 VL - 22 IS - 33 SP - 17140 EP - 17146 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Delahaye, Emilie A1 - Xie, Zailai A1 - Schäfer, Andreas A1 - Douce, Laurent A1 - Rogez, Guillaume A1 - Rabu, Pierre A1 - Günter, Christina A1 - Gutmann, Jochen S. A1 - Taubert, Andreas T1 - Intercalation synthesis of functional hybrid materials based on layered simple hydroxide hosts and ionic liquid guests - a pathway towards multifunctional ionogels without a silica matrix? JF - Dalton transactions : a journal of inorganic chemistry, including bioinorganic, organometallic, and solid-state chemistry N2 - Functional hybrid materials on the basis of inorganic hosts and ionic liquids (ILs) as guests hold promise for a virtually unlimited number of applications. In particular, the interaction and the combination of properties of a defined inorganic matrix and a specific IL could lead to synergistic effects in property selection and tuning. Such hybrid materials, generally termed ionogels, are thus an emerging topic in hybrid materials research. The current article addresses some of the recent developments and focuses on the question why silica is currently the dominating matrix used for (inorganic) ionogel fabrication. In comparison to silica, matrix materials such as layered simple hydroxides, layered double hydroxides, clay-type substances, magnetic or catalytically active solids, and many other compounds could be much more interesting because they themselves may carry useful functionalities, which could also be exploited for multifunctional hybrid materials synthesis. The current article combines experimental results with some arguments as to how new, advanced functional hybrid materials can be generated and which obstacles will need to be overcome to successfully achieve the synthesis of a desired target material. Y1 - 2011 U6 - https://doi.org/10.1039/c1dt10841g SN - 1477-9226 VL - 40 IS - 39 SP - 9977 EP - 9988 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Douce, Laurent A1 - Suisse, Jean-Moise A1 - Guillon, Daniel A1 - Taubert, Andreas T1 - Imidazolium-based liquid crystals a modular platform for versatile new materials with finely tuneable properties and behaviour JF - Liquid crystals : an international journal of science and technology N2 - Ionic liquid Crystals constitute highly versatile materials that have drawn much interest these past few years in the fields of academic research and industrial development. In this respect, the present article is intended as an update of K. Binnemans review published in 2005, but focusing exclusively on the imidazolium cation - the most widely studied. Herein, imidazolium-containing thermotropic liquid crystalline materials will be sorted by molecular structure (mono-, bis-, poly-imidazolium compounds, with symmetrical and non-symmetrical structures) and discussed. Their physico-chemical properties will be exposed in order to adduce the relevancy and potential of the imidazolium platform in various fields of research. KW - imidazolium KW - liquid crystal KW - ionic liquid Y1 - 2011 U6 - https://doi.org/10.1080/02678292.2011.610474 SN - 0267-8292 VL - 38 IS - 11-12 SP - 1653 EP - 1661 PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - JOUR A1 - Draude, F. A1 - Galla, S. A1 - Pelster, Axel A1 - Tentschert, J. A1 - Jungnickel, H. A1 - Haase, Alfred A1 - Mantion, Alexandre A1 - Thuenemann, Andreas F. A1 - Taubert, Andreas A1 - Luch, A. A1 - Arlinghaus, H. F. T1 - ToF-SIMS and Laser-SNMS analysis of macrophages after exposure to silver nanoparticles JF - Surface and interface analysis : an international journal devoted to the development and application of techniques for the analysis surfaces, interfaces and thin films N2 - Silver nanoparticles (SNPs) are among the most commercialized nanoparticles because of their antibacterial effects. Besides being employed, e. g. as a coatingmaterial for sterile surfaces in household articles and appliances, the particles are also used in a broad range of medical applications. Their antibacterial properties make SNPs especially useful for wound disinfection or as a coating material for prostheses and surgical instruments. Because of their optical characteristics, the particles are of increasing interest in biodetection as well. Despite the widespread use of SNPs, there is little knowledge of their toxicity. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) and laser post-ionization secondary neutral mass spectrometry (Laser-SNMS) were used to investigate the effects of SNPs on human macrophages derived from THP-1 cells in vitro. For this purpose, macrophages were exposed to SNPs. The SNP concentration ranges were chosen with regard to functional impairments of the macrophages. To optimize the analysis of the macrophages, a special silicon wafer sandwich preparation technique was employed; ToF-SIMS was employed to characterize fragments originating from macrophage cell membranes. With the use of this optimized sample preparation method, the SNP-exposed macrophages were analyzed with ToF-SIMS and with Laser-SNMS. With Laser-SNMS, the three-dimensional distribution of SNPs in cells could be readily detected with very high efficiency, sensitivity, and submicron lateral resolution. We found an accumulation of SNPs directly beneath the cell membrane in a nanoparticular state as well as agglomerations of SNPs inside the cells. KW - Laser-SNMS KW - ToF-SIMS KW - life sciences KW - imaging KW - nanoparticles KW - three-dimensional depth profiling Y1 - 2013 U6 - https://doi.org/10.1002/sia.4902 SN - 0142-2421 VL - 45 IS - 1 SP - 286 EP - 289 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Farra, Ramzi A1 - Thiel, Kerstin A1 - Winter, Alette A1 - Klamroth, Tillmann A1 - Poeppl, Andreas A1 - Kelling, Alexandra A1 - Schilde, Uwe A1 - Taubert, Andreas A1 - Strauch, Peter T1 - Tetrahalidocuprates(II)-structure and EPR spectroscopy Part 1: Tetrabromidocuprates(II) JF - New journal of chemistry N2 - Tetrahalidocuprates(II) show a high degree of structural flexibility. We present the results of crystallographic and electron paramagnetic resonance (EPR) spectroscopic analyses of four new tetrabromidocuprate(II) compounds and compare the results with previously reported data. The cations in the new compounds are the sterically demanding benzyltriphenylphosphonium, methyltriphenylphosphonium, tetraphenylphosphonium, and hexadecyltrimethylammonium ions; they were used to achieve a reasonable separation of the paramagnetic Cu(II) ions for EPR spectroscopy. X-Ray crystallography shows that in all four complexes the [CuBr4](2-) units have a distorted tetrahedral coordination geometry which is in agreement with DFT calculations. The EPR hyperfine structure was not resolved. This is due to the exchange broadening resulting from still incomplete separation of the paramagnetic Cu(II) centres. Nevertheless, the principal values of the electron Zeemann tensor (g(parallel to) and g(perpendicular to)) of the complexes could be determined. A correlation of structural (X-ray) parameters with the spin density at the copper centres (DFT) is well reflected in the EPR spectra of the bromidocuprates. This enables the correlation of X-ray and EPR parameters to predict the structure of tetrabromidocuprates in physical states other than the crystalline state. As a result, we provide a method to structurally characterize [CuBr4](2-) in, for example, ionic liquids or in solution, which has important implications for e.g. catalysis or materials science. Y1 - 2011 U6 - https://doi.org/10.1039/c1nj20271e SN - 1144-0546 VL - 35 IS - 12 SP - 2793 EP - 2803 PB - Royal Society of Chemistry CY - Cambridge ER - TY - GEN A1 - Figueroa Campos, Gustavo A. A1 - G. K. T. Kruizenga, Johannes A1 - Sagu Tchewonpi, Sorel A1 - Schwarz, Steffen A1 - Homann, Thomas A1 - Taubert, Andreas A1 - Rawel, Harshadrai T1 - Effect of the Post-Harvest Processing on Protein Modification in Green Coffee Beans by Phenolic Compounds T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The protein fraction, important for coffee cup quality, is modified during post-harvest treatment prior to roasting. Proteins may interact with phenolic compounds, which constitute the major metabolites of coffee, where the processing affects these interactions. This allows the hypothesis that the proteins are denatured and modified via enzymatic and/or redox activation steps. The present study was initiated to encompass changes in the protein fraction. The investigations were limited to major storage protein of green coffee beans. Fourteen Coffea arabica samples from various processing methods and countries were used. Different extraction protocols were compared to maintain the status quo of the protein modification. The extracts contained about 4–8 µg of chlorogenic acid derivatives per mg of extracted protein. High-resolution chromatography with multiple reaction monitoring was used to detect lysine modifications in the coffee protein. Marker peptides were allocated for the storage protein of the coffee beans. Among these, the modified peptides K.FFLANGPQQGGK.E and R.LGGK.T of the α-chain and R.ITTVNSQK.I and K.VFDDEVK.Q of β-chain were detected. Results showed a significant increase (p < 0.05) of modified peptides from wet processed green beans as compared to the dry ones. The present study contributes to a better understanding of the influence of the different processing methods on protein quality and its role in the scope of coffee cup quality and aroma. View Full-Text T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1256 KW - Arabica coffee KW - coffee processing KW - protein modification KW - bound phenolic compounds KW - peptide biomarkers KW - LC-MS/MS Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-557643 SN - 1866-8372 VL - 11 SP - 1 EP - 19 PB - Universitätsverlag Potsdam CY - Potsdam ET - 2 ER - TY - GEN A1 - Figueroa Campos, Gustavo A. A1 - Perez, Jeffrey Paulo H. A1 - Block, Inga A1 - Tchewonpi Sagu, Sorel A1 - Saravia Celis, Pedro A1 - Taubert, Andreas A1 - Rawel, Harshadrai Manilal T1 - Preparation of activated carbons from spent coffee and coffee parchment and assessment of their adsorbent efficiency T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The valorization of coffee wastes through modification to activated carbon has been considered as a low-cost adsorbent with prospective to compete with commercial carbons. So far, very few studies have referred to the valorization of coffee parchment into activated carbon. Moreover, low-cost and efficient activation methods need to be more investigated. The aim of this work was to prepare activated carbon from spent coffee grounds and parchment, and to assess their adsorption performance. The co-calcination processing with calcium carbonate was used to prepare the activated carbons, and their adsorption capacity for organic acids, phenolic compounds and proteins was evaluated. Both spent coffee grounds and parchment showed yields after the calcination and washing treatments of around 9.0%. The adsorption of lactic acid was found to be optimal at pH 2. The maximum adsorption capacity of lactic acid with standard commercial granular activated carbon was 73.78 mg/g, while the values of 32.33 and 14.73 mg/g were registered for the parchment and spent coffee grounds activated carbons, respectively. The Langmuir isotherm showed that lactic acid was adsorbed as a monolayer and distributed homogeneously on the surface. Around 50% of total phenols and protein content from coffee wastewater were adsorbed after treatment with the prepared activated carbons, while 44, 43, and up to 84% of hydrophobic compounds were removed using parchment, spent coffee grounds and commercial activated carbon, respectively; the adsorption efficiencies of hydrophilic compounds ranged between 13 and 48%. Finally, these results illustrate the potential valorization of coffee by-products parchment and spent coffee grounds into activated carbon and their use as low-cost adsorbent for the removal of organic compounds from aqueous solutions. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1158 KW - coffee by-products KW - spent coffee grounds KW - parchment KW - valorization KW - calcination KW - activated carbon KW - organic compounds adsorption Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-521914 SN - 1866-8372 IS - 8 ER - TY - JOUR A1 - Figueroa Campos, Gustavo Adolfo A1 - G. K. T. Kruizenga, Johannes A1 - Sagu Tchewonpi, Sorel A1 - Schwarz, Steffen A1 - Homann, Thomas A1 - Taubert, Andreas A1 - Rawel, Harshadrai Manilal T1 - Effect of the post-harvest processing on protein modification in green coffee beans by phenolic compounds JF - Foods : open access journal N2 - The protein fraction, important for coffee cup quality, is modified during post-harvest treatment prior to roasting. Proteins may interact with phenolic compounds, which constitute the major metabolites of coffee, where the processing affects these interactions. This allows the hypothesis that the proteins are denatured and modified via enzymatic and/or redox activation steps. The present study was initiated to encompass changes in the protein fraction. The investigations were limited to major storage protein of green coffee beans. Fourteen Coffea arabica samples from various processing methods and countries were used. Different extraction protocols were compared to maintain the status quo of the protein modification. The extracts contained about 4–8 µg of chlorogenic acid derivatives per mg of extracted protein. High-resolution chromatography with multiple reaction monitoring was used to detect lysine modifications in the coffee protein. Marker peptides were allocated for the storage protein of the coffee beans. Among these, the modified peptides K.FFLANGPQQGGK.E and R.LGGK.T of the α-chain and R.ITTVNSQK.I and K.VFDDEVK.Q of β-chain were detected. Results showed a significant increase (p < 0.05) of modified peptides from wet processed green beans as compared to the dry ones. The present study contributes to a better understanding of the influence of the different processing methods on protein quality and its role in the scope of coffee cup quality and aroma. View Full-Text KW - Arabica coffee KW - coffee processing KW - protein modification KW - bound phenolic compounds KW - peptide biomarkers KW - LC-MS/MS Y1 - 2022 U6 - https://doi.org/10.3390/foods11020159 SN - 2304-8158 VL - 11 PB - MDPI CY - Basel, Schweiz ET - 2 ER - TY - JOUR A1 - Figueroa Campos, Gustavo Adolfo A1 - Perez, Jeffrey Paulo H. A1 - Block, Inga A1 - Sagu Tchewonpi, Sorel A1 - Saravia Celis, Pedro A1 - Taubert, Andreas A1 - Rawel, Harshadrai Manilal T1 - Preparation of activated carbons from spent coffee and coffee parchment and assessment of their adsorbent efficiency JF - Processes : open access journal N2 - The valorization of coffee wastes through modification to activated carbon has been considered as a low-cost adsorbent with prospective to compete with commercial carbons. So far, very few studies have referred to the valorization of coffee parchment into activated carbon. Moreover, low-cost and efficient activation methods need to be more investigated. The aim of this work was to prepare activated carbon from spent coffee grounds and parchment, and to assess their adsorption performance. The co-calcination processing with calcium carbonate was used to prepare the activated carbons, and their adsorption capacity for organic acids, phenolic compounds and proteins was evaluated. Both spent coffee grounds and parchment showed yields after the calcination and washing treatments of around 9.0%. The adsorption of lactic acid was found to be optimal at pH 2. The maximum adsorption capacity of lactic acid with standard commercial granular activated carbon was 73.78 mg/g, while the values of 32.33 and 14.73 mg/g were registered for the parchment and spent coffee grounds activated carbons, respectively. The Langmuir isotherm showed that lactic acid was adsorbed as a monolayer and distributed homogeneously on the surface. Around 50% of total phenols and protein content from coffee wastewater were adsorbed after treatment with the prepared activated carbons, while 44, 43, and up to 84% of hydrophobic compounds were removed using parchment, spent coffee grounds and commercial activated carbon, respectively; the adsorption efficiencies of hydrophilic compounds ranged between 13 and 48%. Finally, these results illustrate the potential valorization of coffee by-products parchment and spent coffee grounds into activated carbon and their use as low-cost adsorbent for the removal of organic compounds from aqueous solutions. KW - coffee by-products KW - spent coffee grounds KW - parchment KW - valorization KW - calcination KW - activated carbon KW - organic compounds adsorption Y1 - 2021 U6 - https://doi.org/10.3390/pr9081396 SN - 2227-9717 VL - 9 IS - 8 PB - MDPI CY - Basel ER - TY - JOUR A1 - Goebel, Ronald A1 - Hesemann, Peter A1 - Friedrich, Alwin A1 - Rothe, Regina A1 - Schlaad, Helmut A1 - Taubert, Andreas T1 - Modular thiol-ene chemistry approach towards mesoporous silica monoliths with organically modified pore walls JF - Chemistry - a European journal N2 - The surface modification of mesoporous silica monoliths through thiol-ene chemistry is reported. First, mesoporous silica monoliths with vinyl, allyl, and thiol groups were synthesized through a sol-gel hydrolysis-poly-condensation reaction from tetramethyl orthosilicate (TMOS) and vinyltriethoxysilane, allyltriethoxysilane, and (3-mercaptopropyl) trimethoxysilane, respectively. By variation of the molar ratio of the comonomers TMOS and functional silane, mesoporous silica objects containing different amounts of vinyl, allyl, and thiol groups were obtained. These intermediates can subsequently be derivatized through radical photoaddition reactions either with a thiol or an olefin, depending on the initial pore wall functionality, to yield silica monoliths with different pore-wall chemistries. Nitrogen sorption, small-angle X-ray scattering, solid-state NMR spectroscopy, elemental analysis, thermogravimetric analysis, and redox titration demonstrate that the synthetic pathway influences the morphology and pore characteristics of the resulting monoliths and also plays a significant role in the efficiency of functionalization. Moreover, the different reactivity of the vinyl and allyl groups on the pore wall affects the addition reaction, and hence, the degree of the pore-wall functionalization. This report demonstrates that thiol-ene photoaddition reactions are a versatile platform for the generation of a large variety of organically modified silica monoliths with different pore surfaces. KW - mesoporous materials KW - photochemistry KW - sol-gel processes KW - surface chemistry Y1 - 2014 U6 - https://doi.org/10.1002/chem.201403982 SN - 0947-6539 SN - 1521-3765 VL - 20 IS - 52 SP - 17579 EP - 17589 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Goebel, Ronald A1 - Hesemann, Peter A1 - Weber, Jens A1 - Moeller, Eléonore A1 - Friedrich, Alwin A1 - Beuermann, Sabine A1 - Taubert, Andreas T1 - Surprisingly high, bulk liquid-like mobility of silica-confined ionic liquids N2 - Mesoporous silica monoliths were prepared by the sol - gel technique and. lled with 1-ethyl-3-methyl imidazolium [Emim]-X (X = dicyanamide [N(CN)(2)], ethyl sulfate [EtSO4], thiocyanate [SCN], and triflate [TfO]) ionic liquids (ILs) using a methanol-IL exchange technique. The structure and behavior of the ILs inside the silica monoliths were studied using X-ray scattering, nitrogen sorption, IR spectroscopy, solid-state NMR, and thermal analysis. DSC finds shifts in both the glass transition temperature and melting points (where applicable) of the ILs. Glass transition and melting occur well below room temperature. There is thus no conflict with the NMR and IR data, which show that the ILs are as mobile at room temperature as the bulk (not confined) ILs. The very narrow line widths of the NMR spectra suggest that the ILs in our materials have the highest mobility reported for confined ILs so far. As a result, our data suggest that it is possible to generate IL/silica hybrid materials (ionogels) with bulk-like properties of the IL. This could be interesting for applications in, e.g., the solar cell or membrane fields. Y1 - 2009 UR - http://xlink.rsc.org/jumptojournal.cfm?journal_code=CP U6 - https://doi.org/10.1039/B821833a SN - 1463-9076 ER - TY - JOUR A1 - Goebel, Ronald A1 - White, Robin J. A1 - Titirici, Maria-Magdalena A1 - Taubert, Andreas T1 - Carbon-based ionogels tuning the properties of the ionic liquid via carbon-ionic liquid interaction JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - The behavior of two ionic liquids (ILs), 1-ethyl-3-methylimidazolium dicyanamide [Emim][DCA] and 1-ethyl-3-methylimidazolium triflate [Emim][TfO], in (meso) porous carbonaceous hosts was investigated. Prior to IL incorporation into the host, the carbon matrix was thermally annealed between 180 and 900 degrees C to control carbon condensation and surface chemistry. The resulting materials have an increasing "graphitic'' carbon character with increasing treatment temperature, reflected in a modified behavior of the ILs when impregnated into the carbon host. The two ILs show significant changes in the thermal behavior as measured from differential scanning calorimetry; these changes can be assigned to anion-pi interaction between the IL anions and the pore wall surfaces of these flexible carbonaceous support materials. Y1 - 2012 U6 - https://doi.org/10.1039/c2cp23929a SN - 1463-9076 VL - 14 IS - 17 SP - 5992 EP - 5997 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Goebel, Ronald A1 - Xie, Zai-Lai A1 - Neumann, Mike A1 - Günter, Christina A1 - Loebbicke, Ruben A1 - Kubo, Shiori A1 - Titirici, Maria-Magdalena A1 - Giordano, Cristina A1 - Taubert, Andreas T1 - Synthesis of mesoporous carbon/iron carbide hybrids with unusually high surface areas from the ionic liquid precursor [Bmim][FeCl4] JF - CrystEngComm N2 - Mesoporous carbon/iron carbide hybrid materials with surface areas reaching 800 m(2) g(-1) were synthesized via an exotemplating route using monolithic mesoporous silica as template and the ionic liquid 1-butyl-3-methylimidazolium tetrachloridoferrate(III) [Bmim][FeCl4] as carbon and iron source. After heat treatment (750 degrees C under argon) of the [Bmim][FeCl4] precursor confined within the silica matrix, the silica exotemplate was removed with HF leaving the mesoporous C/Fe3C hybrid behind. The surface areas and the pore sizes depend on the exotemplate and the surface areas a significantly larger than any other surface area reported for C/Fe3C hybrid materials so far. The approach is thus a prototype for the synthesis of high-surface area iron carbide-based hybrid materials with potential application in catalysis. Y1 - 2012 U6 - https://doi.org/10.1039/c2ce25064k SN - 1466-8033 VL - 14 IS - 15 SP - 4946 EP - 4951 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Graf, Philipp A1 - Mantion, Alexandre A1 - Foelske, Annette A1 - Shkilnyy, Andriy A1 - MaÜic, Admir A1 - Thuenemann, Andreas F. A1 - Taubert, Andreas T1 - Peptide-coated silver nanoparticles : synthesis, surface chemistry, and pH-triggered, reversible assembly into particle assemblies N2 - Simple tripeptides are scaffolds for the synthesis and further assembly of peptide/silver nanoparticle composites. Herein, we further explore peptide-con trolled silver nanoparticle assembly processes. Silver nanoparticles with a pH-responsive peptide coating have been synthesized by using a one-step precipitation/coating route. The nature of the peptide/silver interaction and the effect of the peptide oil the formation of the silver particles have been studied via UV/Vis, X-ray photoelectron, and surface-enhanced Raman spectroscopies as well as through electron microscopy, small angle X-ray scattering and powder Xray diffraction with Rietveld refinement. The particles reversibly form aggregates of different sizes in aqueous solution. The state of aggregation call be controlled by the solution pH value. At low pH values, individual particles are present. At neutral pH values, small clusters form and at high pH values, large precipitates are observed. Y1 - 2009 UR - http://www3.interscience.wiley.com/cgi-bin/jhome/26293/ U6 - https://doi.org/10.1002/chem.200802329 SN - 0947-6539 ER - TY - JOUR A1 - Graf, Philipp A1 - Mantion, Alexandre A1 - Haase, Andrea A1 - Thuenemann, Andreas F. A1 - Masic, Admir A1 - Meier, Wolfgang P. A1 - Luch, Andreas A1 - Taubert, Andreas T1 - Silicification of peptide-coated silver nanoparticles-A biomimetic soft chemistry approach toward chiral hybrid core-shell materials JF - ACS nano N2 - Silica and silver nanoparticles are relevant materials for new applications in optics, medicine, and analytical chemistry. We have previously reported the synthesis of pH responsive, peptide-templated, chiral silver nanoparticles. The current report shows that peptide-stabilized nanoparticles can easily be coated with a silica shell by exploiting the ability of the peptide coating to hydrolyze silica precursors such as TEOS or TMOS. The resulting silica layer protects the nanoparticles from chemical etching, allows their inclusion in other materials, and renders them biocompatible. Using electron and atomic force microscopy, we show that the silica shell thickness and the particle aggregation can be controlled simply by the reaction time. Small-angle X ray scattering confirms the Ag/peptide@silica core-shell structure. UV-vis and circular dichroism spectroscopy prove the conservation of the silver nanoparticle chirality upon silicification. Biological tests show that the biocompatibility in simple bacterial systems is significantly improved once a silica layer is deposited on the silver particles. KW - peptide-templated materials KW - silver nanoparticles KW - chiral nanoparticles KW - Ag/peptide@SiO(2) nanostructures KW - core-shell structures Y1 - 2011 U6 - https://doi.org/10.1021/nn102969p SN - 1936-0851 VL - 5 IS - 2 SP - 820 EP - 833 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Göbel, Ronald A1 - Stoltenberg, Marcus A1 - Krehl, Stefan A1 - Biolley, Christine A1 - Rothe, Regina A1 - Schmidt, Bernd A1 - Hesemann, Peter A1 - Taubert, Andreas T1 - A Modular Approach towards Mesoporous Silica Monoliths with Organically Modified Pore Walls: Nucleophilic Addition, Olefin Metathesis, and Cycloaddition JF - European journal of inorganic chemistry : a journal of ChemPubSoc Europe N2 - We have synthesized mesoporous silica (monoliths) with defined surface chemistry by means of a number of addition reactions: (i) coupling of an isocyanate to a surface-immobilized thiol, (ii) addition of an epoxide to a surface-immobilized thiol, (iii) cross-metathesis between two olefins, and (iv) Huisgen [2+3] cycloaddition of an alkyne-functionalized silica monolith with an azide. Functionalization of the mesopores was observed, but there are significant differences between individual approaches. Isocyanate and epoxide additions lead to high degrees of functionalization, whereas olefin metathesis and [2+3] cycloaddition are less effective. We further show that the efficiency of the modification is about twice as high in mesoporous silica particles than in macroscopic silica monoliths. KW - Mesoporous materials KW - Hybrid materials KW - Surface chemistry KW - Click chemistry KW - Nucleophilic addition Y1 - 2016 U6 - https://doi.org/10.1002/ejic.201500638 SN - 1434-1948 SN - 1099-0682 VL - 6 SP - 2088 EP - 2099 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Haase, A. A1 - Mantion, A. A1 - Graf, P. A1 - Plendl, J. A1 - Thünemann, Andreas F. A1 - Meier, Wolfgang P. A1 - Taubert, Andreas A1 - Luch, A. T1 - A novel type of silver nanoparticles and their advantages in toxicity testing in cell culture systems JF - Archives of toxicology : official journal of EUROTOX N2 - Silver nanoparticles (SNPs) are among the most commercialized nanoparticles worldwide. Often SNP are used because of their antibacterial properties. Besides that they possess unique optic and catalytic features, making them highly interesting for the creation of novel and advanced functional materials. Despite its widespread use only little data exist in terms of possible adverse effects of SNP on human health. Conventional synthesis routes usually yield products of varying quality and property. It thus may become puzzling to compare biological data from different studies due to the great variety in sizes, coatings or shapes of the particles applied. Here, we applied a novel synthesis approach to obtain SNP of well-defined colloidal and structural properties. Being stabilized by a covalently linked small peptide, these particles are nicely homogenous, with narrow size distribution, and form monodisperse suspensions in aqueous solutions. We applied these peptide-coated SNP in two different sizes of 20 or 40 nm (Ag20Pep and Ag40Pep) and analyzed responses of THP-1-derived human macrophages while being exposed against these particles. Gold nanoparticles of similar size and coating (Au20Pep) were used for comparison. The cytotoxicity of particles was assessed by WST-1 and LDH assays, and the uptake into the cells was confirmed via transmission electron microscopy. In summary, our data demonstrate that this novel type of SNP is well suited to serve as model system for nanoparticles to be tested in toxicological studies in vitro. KW - Silver nanoparticles KW - Peptide coating KW - Nanotoxicity Y1 - 2012 U6 - https://doi.org/10.1007/s00204-012-0836-0 SN - 0340-5761 VL - 86 IS - 7 SP - 1089 EP - 1098 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Haase, Andrea A1 - Arlinghaus, Heinrich F. A1 - Tentschert, Jutta A1 - Jungnickel, Harald A1 - Graf, Philipp A1 - Mantion, Alexandre A1 - Draude, Felix A1 - Galla, Sebastian A1 - Plendl, Johanna A1 - Goetz, Mario E. A1 - Masic, Admir A1 - Meier, Wolfgang P. A1 - Thuenemann, Andreas F. A1 - Taubert, Andreas A1 - Luch, Andreas T1 - Application of Laser Postionization Secondary Neutral Mass Spectrometry/Time-of-Flight Secondary Ion Mass Spectrometry in Nanotoxicology: Visualization of Nanosilver in Human Macrophages and Cellular Responses JF - ACS nano N2 - Silver nanoparticles (SNP) are the subject of worldwide commercialization because of their antimicrobial effects. Yet only little data on their mode of action exist. Further, only few techniques allow for visualization and quantification of unlabeled nanoparticles inside cells. To study SNP of different sizes and coatings within human macrophages, we introduce a novel laser postionization secondary neutral mass spectrometry (Laser-SNMS) approach and prove this method superior to the widely applied confocal Raman and transmission electron microscopy. With time-of-flight secondary ion mass spectrometry (TOF-SIMS) we further demonstrate characteristic fingerprints in the lipid pattern of the cellular membrane indicative of oxidative stress and membrane fluidity changes. Increases of protein carbonyl and heme oxygenase-1 levels in treated cells confirm the presence of oxidative stress biochemically. Intriguingly, affected phagocytosis reveals as highly sensitive end point of SNP-mediated adversity In macrophages. The cellular responses monitored are. hierarchically linked, but follow individual kinetics and are partially reversible. KW - nanosilver KW - Laser-SNMS KW - TOF-SIMS KW - confocal Raman microscopy KW - oxidative stress KW - protein carbonyls Y1 - 2011 U6 - https://doi.org/10.1021/nn200163w SN - 1936-0851 VL - 5 IS - 4 SP - 3059 EP - 3068 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Haase, Andrea A1 - Rott, Stephanie A1 - Mantion, Alexandre A1 - Graf, Philipp A1 - Plendl, Johanna A1 - Thünemann, Andreas F. A1 - Meier, Wolfgang P. A1 - Taubert, Andreas A1 - Luch, Andreas A1 - Reiser, Georg T1 - Effects of silver nanoparticles on primary mixed neural cell cultures: Uptake, oxidative stress and acute calcium responses JF - Toxicological sciences N2 - In the body, nanoparticles can be systemically distributed and then may affect secondary target organs, such as the central nervous system (CNS). Putative adverse effects on the CNS are rarely investigated to date. Here, we used a mixed primary cell model consisting mainly of neurons and astrocytes and a minor proportion of oligodendrocytes to analyze the effects of well-characterized 20 and 40 nm silver nanoparticles (SNP). Similar gold nanoparticles served as control and proved inert for all endpoints tested. SNP induced a strong size-dependent cytotoxicity. Additionally, in the low concentration range (up to 10 mu g/ml of SNP), the further differentiated cultures were more sensitive to SNP treatment. For detailed studies, we used low/medium dose concentrations (up to 20 mu g/ml) and found strong oxidative stress responses. Reactive oxygen species (ROS) were detected along with the formation of protein carbonyls and the induction of heme oxygenase-1. We observed an acute calcium response, which clearly preceded oxidative stress responses. ROS formation was reduced by antioxidants, whereas the calcium response could not be alleviated by antioxidants. Finally, we looked into the responses of neurons and astrocytes separately. Astrocytes were much more vulnerable to SNP treatment compared with neurons. Consistently, SNP were mainly taken up by astrocytes and not by neurons. Immunofluorescence studies of mixed cell cultures indicated stronger effects on astrocyte morphology. Altogether, we can demonstrate strong effects of SNP associated with calcium dysregulation and ROS formation in primary neural cells, which were detectable already at moderate dosages. KW - silver nanoparticles KW - neurons KW - oxidative stress KW - protein carbonyls KW - calcium Y1 - 2012 U6 - https://doi.org/10.1093/toxsci/kfs003 SN - 1096-6080 VL - 126 IS - 2 SP - 457 EP - 468 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Hamed Misbah, Mohamed A1 - Santos, Mercedes A1 - Quintanilla, Luis A1 - Günter, Christina A1 - Alonso, Matilde A1 - Taubert, Andreas A1 - Carlos Rodriguez-Cabello, Jose T1 - Recombinant DNA technology and click chemistry: a powerful combination for generating a hybrid elastin-like-statherin hydrogel to control calcium phosphate mineralization JF - Beilstein journal of nanotechnology N2 - Understanding the mechanisms responsible for generating different phases and morphologies of calcium phosphate by elastin-like recombinamers is supreme for bioengineering of advanced multifunctional materials. The generation of such multifunctional hybrid materials depends on the properties of their counterparts and the way in which they are assembled. The success of this assembly depends on the different approaches used, such as recombinant DNA technology and click chemistry. In the present work, an elastin-like recombinamer bearing lysine amino acids distributed along the recombinamer chain has been cross-linked via Huisgen [2 + 3] cycloaddition. The recombinamer contains the SN(A)15 peptide domains inspired by salivary statherin, a peptide epitope known to specifically bind to and nucleate calcium phosphate. The benefit of using click chemistry is that the hybrid elastin-like-statherin recombinamers cross-link without losing their fibrillar structure. Mineralization of the resulting hybrid elastin-like-statherin recombinamer hydrogels with calcium phosphate is described. Thus, two different hydroxyapatite morphologies (cauliflower- and plate-like) have been formed. Overall, this study shows that crosslinking elastin-like recombinamers leads to interesting matrix materials for the generation of calcium phosphate composites with potential applications as biomaterials. KW - calcium phosphate KW - elastin-like recombinamers KW - hydroxyapatite KW - mineralization KW - SN(A)15 Y1 - 2017 U6 - https://doi.org/10.3762/bjnano.8.80 SN - 2190-4286 VL - 8 SP - 772 EP - 783 PB - Beilstein-Institut zur Förderung der Chemischen Wissenschaften CY - Frankfurt, Main ER - TY - JOUR A1 - Hentrich, Doreen A1 - Brezesinski, Gerald A1 - Kuebel, Christian A1 - Bruns, Michael A1 - Taubert, Andreas T1 - Cholesteryl Hemisuccinate Monolayers Efficiently Control Calcium Phosphate Nucleation and Growth JF - Crystal growth & design : integrating the fields of crystal engineering and crystal growth for the synthesis and applications of new materials N2 - The article describes the phase behavior of cholesteryl hemisuccinate at the air-liquid interface and its effect on calcium phosphate (CP) mineralization. The amphiphile forms stable monolayers with phase transitions at the air-liquid interface from a gas to a tilted liquid-condensed (TLC) and finally to an untilted liquid-condensed (ULC) phase. CP mineralization beneath these monolayers leads to crumpled CP layers made from individual plates. The main crystal phase is octacalcium phosphate (OCP) along with a minor fraction of hydroxyapatite (HAP), as confirmed by X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy, bright field transmission electron microscopy, and electron diffraction. Y1 - 2017 U6 - https://doi.org/10.1021/acs.cgd.7b00753 SN - 1528-7483 SN - 1528-7505 VL - 17 SP - 5764 EP - 5774 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Hentrich, Doreen A1 - Junginger, Mathias A1 - Bruns, Michael A1 - Boerner, Hans G. A1 - Brandt, Jessica A1 - Brezesinski, Gerald A1 - Taubert, Andreas T1 - Interface-controlled calcium phosphate mineralization: effect of oligo(aspartic acid)-rich interfaces JF - CrystEngComm N2 - The phase behavior of an amphiphilic block copolymer based on a poly(aspartic acid) hydrophilic block and a poly(n-butyl acrylate) hydrophobic block was investigated at the air-water and air-buffer interface. The polymer forms stable monomolecular films on both subphases. At low pH, the isotherms exhibit a plateau. Compression-expansion experiments and infrared reflection absorption spectroscopy suggest that the plateau is likely due to the formation of polymer bi- or multilayers. At high pH the films remain intact upon compression and no multilayer formation is observed. Furthermore, the mineralization of calcium phosphate beneath the monolayer was studied at different pH. The pH of the subphase and thus the polymer charge strongly affects the phase behavior of the film and the mineral formation. After 4 h of mineralization at low pH, atomic force microscopy shows smooth mineral films with a low roughness. With increasing pH the mineral films become inhomogeneous and the roughness increases. Transmission electron microscopy confirms this: at low pH a few small but uniform particles form whereas particles grown at higher pH are larger and highly agglomerated. Energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy confirm the formation of calcium phosphate. The levels of mineralization are higher in samples grown at high pH. Y1 - 2015 U6 - https://doi.org/10.1039/c4ce02274b SN - 1466-8033 VL - 17 IS - 36 SP - 6901 EP - 6913 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Hentrich, Doreen A1 - Junginger, Mathias A1 - Bruns, Michael A1 - Börner, Hans Gerhard A1 - Brandt, Jessica A1 - Brezesinski, Gerald A1 - Taubert, Andreas T1 - Interface-controlled calcium phosphate mineralization BT - effect of oligo(aspartic acid)-rich interfaces JF - CrystEngComm N2 - The phase behavior of an amphiphilic block copolymer based on a poly(aspartic acid) hydrophilic block and a poly(n-butyl acrylate) hydrophobic block was investigated at the air–water and air–buffer interface. The polymer forms stable monomolecular films on both subphases. At low pH, the isotherms exhibit a plateau. Compression–expansion experiments and infrared reflection absorption spectroscopy suggest that the plateau is likely due to the formation of polymer bi- or multilayers. At high pH the films remain intact upon compression and no multilayer formation is observed. Furthermore, the mineralization of calcium phosphate beneath the monolayer was studied at different pH. The pH of the subphase and thus the polymer charge strongly affects the phase behavior of the film and the mineral formation. After 4 h of mineralization at low pH, atomic force microscopy shows smooth mineral films with a low roughness. With increasing pH the mineral films become inhomogeneous and the roughness increases. Transmission electron microscopy confirms this: at low pH a few small but uniform particles form whereas particles grown at higher pH are larger and highly agglomerated. Energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy confirm the formation of calcium phosphate. The levels of mineralization are higher in samples grown at high pH. Y1 - 2015 U6 - https://doi.org/10.1039/C4CE02274B SN - 1466-8033 IS - 17 SP - 6901 EP - 6913 PB - Royal Society of Chemistry CY - London ER - TY - GEN A1 - Hentrich, Doreen A1 - Junginger, Mathias A1 - Bruns, Michael A1 - Börner, Hans Gerhard A1 - Brandt, Jessica A1 - Brezesinski, Gerald A1 - Taubert, Andreas T1 - Interface-controlled calcium phosphate mineralization BT - effect of oligo(aspartic acid)-rich interfaces N2 - The phase behavior of an amphiphilic block copolymer based on a poly(aspartic acid) hydrophilic block and a poly(n-butyl acrylate) hydrophobic block was investigated at the air–water and air–buffer interface. The polymer forms stable monomolecular films on both subphases. At low pH, the isotherms exhibit a plateau. Compression–expansion experiments and infrared reflection absorption spectroscopy suggest that the plateau is likely due to the formation of polymer bi- or multilayers. At high pH the films remain intact upon compression and no multilayer formation is observed. Furthermore, the mineralization of calcium phosphate beneath the monolayer was studied at different pH. The pH of the subphase and thus the polymer charge strongly affects the phase behavior of the film and the mineral formation. After 4 h of mineralization at low pH, atomic force microscopy shows smooth mineral films with a low roughness. With increasing pH the mineral films become inhomogeneous and the roughness increases. Transmission electron microscopy confirms this: at low pH a few small but uniform particles form whereas particles grown at higher pH are larger and highly agglomerated. Energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy confirm the formation of calcium phosphate. The levels of mineralization are higher in samples grown at high pH. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 213 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-89540 SP - 6901 EP - 6913 ER - TY - JOUR A1 - Hentrich, Doreen A1 - Taabache, Soraya A1 - Brezesinski, Gerald A1 - Lange, Nele A1 - Unger, Wolfgang A1 - Kuebel, Christian A1 - Bertin, Annabelle A1 - Taubert, Andreas T1 - A Dendritic Amphiphile for Efficient Control of Biomimetic Calcium Phosphate Mineralization JF - Macromolecular bioscience N2 - The phase behavior of a dendritic amphiphile containing a Newkome-type dendron as the hydrophilic moiety and a cholesterol unit as the hydrophobic segment is investigated at the air-liquid interface. The amphiphile forms stable monomolecular films at the airliquid interface on different subphases. Furthermore, the mineralization of calcium phosphate beneath the monolayer at different calcium and phosphate concentrations versus mineralization time shows that at low calcium and phosphate concentrations needles form, whereas flakes and spheres dominate at higher concentrations. Energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and electron diffraction confirm the formation of calcium phosphate. High-resolution transmission electron microscopy and electron diffraction confirm the predominant formation of octacalcium phosphate and hydroxyapatite. The data also indicate that the final products form via a complex multistep reaction, including an association step, where nano-needles aggregate into larger flake-like objects. Y1 - 2017 U6 - https://doi.org/10.1002/mabi.201600524 SN - 1616-5187 SN - 1616-5195 VL - 17 SP - 2541 EP - 2548 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Hentrich, Doreen A1 - Tauer, Klaus A1 - Espanol, Montserrat A1 - Ginebra, Maria-Pau A1 - Taubert, Andreas T1 - EDTA and NTA effectively tune the mineralization of calcium phosphate from bulk aqueous solution JF - Biomimetics N2 - This study describes the effects of nitrilotriacetic acid (NTA) and ethylenediaminotetraacetic acid (EDTA) on themineralization of calciumphosphate from bulk aqueous solution. Mineralization was performed between pH 6 and 9 and with NTA or EDTA concentrations of 0, 5, 10, and 15 mM. X-ray diffraction and infrared spectroscopy show that at low pH, mainly brushite precipitates and at higher pH, mostly hydroxyapatite forms. Both additives alter the morphology of the precipitates. Without additive, brushite precipitates as large plates. With NTA, the morphology changes to an unusual rod-like shape. With EDTA, the edges of the particles are rounded and disk-like particles form. Conductivity and pH measurements suggest that the final products form through several intermediate steps. KW - biomineralization KW - biomimetic mineralization KW - calcium phosphate KW - NTA KW - EDTA KW - precipitation KW - brushite KW - hydroxyapatite Y1 - 2017 U6 - https://doi.org/10.3390/biomimetics2040024 SN - 2313-7673 VL - 2 IS - 4 PB - MDPI CY - Basel ER - TY - GEN A1 - Hentrich, Doreen A1 - Tauer, Klaus A1 - Espanol, Montserrat A1 - Ginebra, Maria-Pau A1 - Taubert, Andreas T1 - EDTA and NTA effectively tune the mineralization of calcium phosphate from bulk aqueous solution T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - This study describes the effects of nitrilotriacetic acid (NTA) and ethylenediaminotetraacetic acid (EDTA) on themineralization of calciumphosphate from bulk aqueous solution. Mineralization was performed between pH 6 and 9 and with NTA or EDTA concentrations of 0, 5, 10, and 15 mM. X-ray diffraction and infrared spectroscopy show that at low pH, mainly brushite precipitates and at higher pH, mostly hydroxyapatite forms. Both additives alter the morphology of the precipitates. Without additive, brushite precipitates as large plates. With NTA, the morphology changes to an unusual rod-like shape. With EDTA, the edges of the particles are rounded and disk-like particles form. Conductivity and pH measurements suggest that the final products form through several intermediate steps. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1095 KW - biomineralization KW - biomimetic mineralization KW - calcium phosphate KW - NTA KW - EDTA KW - precipitation KW - brushite KW - hydroxyapatite Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-469186 SN - 1866-8372 IS - 1095 ER - TY - JOUR A1 - Herold, Heike M. A1 - Aigner, Tamara Bernadette A1 - Grill, Carolin E. A1 - Krüger, Stefanie A1 - Taubert, Andreas A1 - Scheibel, Thomas R. T1 - SpiderMAEn BT - recombinant spider silk-based hybrid materials for advanced energy technology JF - Bioinspired, Biomimetic and Nanobiomaterials N2 - A growing energy demand requires new and preferably renewable energy sources. The infinite availability of solar radiation makes its conversion into storable and transportable energy forms attractive for research as well as for the industry. One promising example of a transportable fuel is hydrogen (H-2), making research into eco-friendly hydrogen production meaningful. Here, a hybrid system was developed using newly designed recombinant spider silk protein variants as a template for mineralization with inorganic titanium dioxide and gold. These bioinspired organic/inorganic hybrid materials allow for hydrogen production upon light irradiation. To begin with, recombinant spider silk proteins bearing titanium dioxide and gold-binding moieties were created and processed into structured films. These films were modified with gold and titanium dioxide in order to produce a photocatalyst. Subsequent testing revealed hydrogen production as a result of light-induced hydrolysis of water. Therefore, the novel setup presented here provides access to a new principle of generating advanced hybrid materials for sustainable hydrogen production and depicts a promising platform for further studies on photocatalytic production of hydrogen, the most promising future fuel. KW - hybrid materials KW - hydrogen KW - photocatalysts Y1 - 2019 U6 - https://doi.org/10.1680/jbibn.18.00007 SN - 2045-9858 SN - 2045-9866 VL - 8 IS - 1 SP - 99 EP - 108 PB - ICE Publishing CY - Westminister ER - TY - JOUR A1 - Heyne, Benjamin A1 - Arlt, Kristin A1 - Geßner, André A1 - Richter, Alexander F. A1 - Döblinger, Markus A1 - Feldmann, Jochen A1 - Taubert, Andreas A1 - Wedel, Armin T1 - Mixed Mercaptocarboxylic Acid Shells Provide Stable Dispersions of InPZnS/ZnSe/ZnS Multishell Quantum Dots in Aqueous Media JF - Nanomaterials N2 - Highly luminescent indium phosphide zinc sulfide (InPZnS) quantum dots (QDs), with zinc selenide/zinc sulfide (ZnSe/ZnS) shells, were synthesized. The QDs were modified via a post-synthetic ligand exchange reaction with 3-mercaptopropionic acid (MPA) and 11-mercaptoundecanoic acid (MUA) in different MPA:MUA ratios, making this study the first investigation into the effects of mixed ligand shells on InPZnS QDs. Moreover, this article also describes an optimized method for the correlation of the QD size vs. optical absorption of the QDs. Upon ligand exchange, the QDs can be dispersed in water. Longer ligands (MUA) provide more stable dispersions than short-chain ligands. Thicker ZnSe/ZnS shells provide a better photoluminescence quantum yield (PLQY) and higher emission stability upon ligand exchange. Both the ligand exchange and the optical properties are highly reproducible between different QD batches. Before dialysis, QDs with a ZnS shell thickness of ~4.9 monolayers (ML), stabilized with a mixed MPA:MUA (mixing ratio of 1:10), showed the highest PLQY, at ~45%. After dialysis, QDs with a ZnS shell thickness of ~4.9 ML, stabilized with a mixed MPA:MUA and a ratio of 1:10 and 1:100, showed the highest PLQYs, of ~41%. The dispersions were stable up to 44 days at ambient conditions and in the dark. After 44 days, QDs with a ZnS shell thickness of ~4.9 ML, stabilized with only MUA, showed the highest PLQY, of ~34%. KW - quantum dots KW - cadmium-free KW - Cd-free KW - InP KW - InPZnS KW - multishell KW - mercaptocarboxylic acids KW - 3-mercaptopropionic acid KW - 11-mercaptoundecanoic acid KW - phase transfer KW - ligand exchange KW - aqueous dispersion KW - QDs Y1 - 2020 U6 - https://doi.org/10.3390/nano10091858 SN - 2079-4991 VL - 10 IS - 9 PB - MDPI CY - Basel ER - TY - GEN A1 - Heyne, Benjamin A1 - Arlt, Kristin A1 - Geßner, André A1 - Richter, Alexander F. A1 - Döblinger, Markus A1 - Feldmann, Jochen A1 - Taubert, Andreas A1 - Wedel, Armin T1 - Mixed Mercaptocarboxylic Acid Shells Provide Stable Dispersions of InPZnS/ZnSe/ZnS Multishell Quantum Dots in Aqueous Media T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Highly luminescent indium phosphide zinc sulfide (InPZnS) quantum dots (QDs), with zinc selenide/zinc sulfide (ZnSe/ZnS) shells, were synthesized. The QDs were modified via a post-synthetic ligand exchange reaction with 3-mercaptopropionic acid (MPA) and 11-mercaptoundecanoic acid (MUA) in different MPA:MUA ratios, making this study the first investigation into the effects of mixed ligand shells on InPZnS QDs. Moreover, this article also describes an optimized method for the correlation of the QD size vs. optical absorption of the QDs. Upon ligand exchange, the QDs can be dispersed in water. Longer ligands (MUA) provide more stable dispersions than short-chain ligands. Thicker ZnSe/ZnS shells provide a better photoluminescence quantum yield (PLQY) and higher emission stability upon ligand exchange. Both the ligand exchange and the optical properties are highly reproducible between different QD batches. Before dialysis, QDs with a ZnS shell thickness of ~4.9 monolayers (ML), stabilized with a mixed MPA:MUA (mixing ratio of 1:10), showed the highest PLQY, at ~45%. After dialysis, QDs with a ZnS shell thickness of ~4.9 ML, stabilized with a mixed MPA:MUA and a ratio of 1:10 and 1:100, showed the highest PLQYs, of ~41%. The dispersions were stable up to 44 days at ambient conditions and in the dark. After 44 days, QDs with a ZnS shell thickness of ~4.9 ML, stabilized with only MUA, showed the highest PLQY, of ~34%. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1026 KW - quantum dots KW - cadmium-free KW - Cd-free KW - InP KW - InPZnS KW - multishell KW - mercaptocarboxylic acids KW - 3-mercaptopropionic acid KW - 11-mercaptoundecanoic acid KW - phase transfer KW - ligand exchange KW - aqueous dispersion KW - QDs Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-486032 SN - 1866-8372 IS - 1026 ER - TY - JOUR A1 - Ihlenburg, Ramona A1 - Lehnen, Anne-Catherine A1 - Koetz, Joachim A1 - Taubert, Andreas T1 - Sulfobetaine Cryogels for Preferential Adsorption of Methyl Orange from Mixed Dye Solutions JF - Polymers / Molecular Diversity Preservation International N2 - New cryogels for selective dye removal from aqueous solution were prepared by free radical polymerization from the highly water-soluble crosslinker N,N,N’,N’-tetramethyl-N,N’-bis(2-ethylmethacrylate)-propyl-1,3-diammonium dibromide and the sulfobetaine monomer 2-(N-3-sulfopropyl-N,N-dimethyl ammonium)ethyl methacrylate. The resulting white and opaque cryogels have micrometer sized pores with a smaller substructure. They adsorb methyl orange (MO) but not methylene blue (MB) from aqueous solution. Mixtures of MO and MB can be separated through selective adsorption of the MO to the cryogels while the MB remains in solution. The resulting cryogels are thus candidates for the removal of hazardous organic substances, as exemplified by MO and MB, from water. Clearly, it is possible that the cryogels are also potentially interesting for removal of other compounds such as pharmaceuticals or pesticides, but this must be investigated further. KW - cryogel KW - water treatment KW - dye removal KW - methyl orange KW - methylene blue KW - dye mixture Y1 - 2020 U6 - https://doi.org/10.3390/polym13020208 SN - 2073-4360 VL - 13 IS - 2 PB - MDPI CY - Basel ER - TY - GEN A1 - Ihlenburg, Ramona A1 - Lehnen, Anne-Catherine A1 - Koetz, Joachim A1 - Taubert, Andreas T1 - Sulfobetaine Cryogels for Preferential Adsorption of Methyl Orange from Mixed Dye Solutions T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - New cryogels for selective dye removal from aqueous solution were prepared by free radical polymerization from the highly water-soluble crosslinker N,N,N’,N’-tetramethyl-N,N’-bis(2-ethylmethacrylate)-propyl-1,3-diammonium dibromide and the sulfobetaine monomer 2-(N-3-sulfopropyl-N,N-dimethyl ammonium)ethyl methacrylate. The resulting white and opaque cryogels have micrometer sized pores with a smaller substructure. They adsorb methyl orange (MO) but not methylene blue (MB) from aqueous solution. Mixtures of MO and MB can be separated through selective adsorption of the MO to the cryogels while the MB remains in solution. The resulting cryogels are thus candidates for the removal of hazardous organic substances, as exemplified by MO and MB, from water. Clearly, it is possible that the cryogels are also potentially interesting for removal of other compounds such as pharmaceuticals or pesticides, but this must be investigated further. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1093 KW - cryogel KW - water treatment KW - dye removal KW - methyl orange KW - methylene blue KW - dye mixture Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-488987 SN - 1866-8372 IS - 1093 ER - TY - JOUR A1 - Ihlenburg, Ramona A1 - Mai, Tobias A1 - Thünemann, Andreas F. A1 - Baerenwald, Ruth A1 - Saalwächter, Kay A1 - Koetz, Joachim A1 - Taubert, Andreas T1 - Sulfobetaine hydrogels with a complex multilength-scale hierarchical structure JF - The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces & biophysical chemistry N2 - Hydrogels with a hierarchical structure were prepared from a new highly water-soluble crosslinker N,N,N',N'-tetramethyl-N,N'-bis(2-ethylmethacrylate)-propyl-1,3-diammonium dibromide and from the sulfobetaine monomer 2-(N-3-sulfopropyl-N,N-dimethyl ammonium)ethyl methacrylate. The free radical polymerization of the two compounds is rapid and yields near-transparent hydrogels with sizes up to 5 cm in diameter. Rheology shows a clear correlation between the monomer-to-crosslinker ratio and the storage and loss moduli of the hydrogels. Cryo-scanning electron microscopy, low-field nuclear magnetic resonance (NMR) spectroscopy, and small-angle X-ray scattering show that the gels have a hierarchical structure with features spanning the nanometer to the sub-millimeter scale. The NMR study is challenged by the marked inhomogeneity of the gels and the complex chemical structure of the sulfobetaine monomer. NMR spectroscopy shows how these complications can be addressed via a novel fitting approach that considers the mobility gradient along the side chain of methacrylate-based monomers. KW - Defects KW - Hydrogels KW - Nuclear magnetic resonance spectroscopy KW - Scattering KW - X-ray scattering Y1 - 2021 U6 - https://doi.org/10.1021/acs.jpcb.0c10601 SN - 1520-6106 SN - 1520-5207 VL - 125 IS - 13 SP - 3398 EP - 3408 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Junginger, Mathias A1 - Kübel, Christian A1 - Schacher, Felix H. A1 - Müller, Axel H. E. A1 - Taubert, Andreas T1 - Crystal structure and chemical composition of biomimetric calcium phosphate nanofibers N2 - Calcium phosphate nanofibers with a diameter of only a few nanometers and a cotton-ball-like aggregate morphology have been reported several times in the literature. Although fiber formation seems reproducible in a variety of conditions, the crystal structure and chemical composition of the fibers have been elusive. Using scanning transmission electron microscopy, low dose electron (nano)diffraction, energy-dispersive X-ray spectroscopy, and energy- filtered transmission electron microscopy, we have assigned crystal structures and chemical compositions to the fibers. Moreover, we demonstrate that the mineralization process yields true polymer/calcium phosphate hybrid materials where the block copolymer template is closely associated with the calcium phosphate. Y1 - 2013 UR - http://pubs.rsc.org/en/content/articlepdf/2013/ra/c3ra23348k U6 - https://doi.org/10.1039/c3ra23348k ER - TY - JOUR A1 - Junginger, Mathias A1 - Kübel, Christian A1 - Schacher, Felix H. A1 - Müller, Axel H. E. A1 - Taubert, Andreas T1 - Crystal structure and chemical composition of biomimetic calcium phosphate nanofibers JF - RSC Advances N2 - Calcium phosphate nanofibers with a diameter of only a few nanometers and a cotton-ball-like aggregate morphology have been reported several times in the literature. Although fiber formation seems reproducible in a variety of conditions, the crystal structure and chemical composition of the fibers have been elusive. Using scanning transmission electron microscopy, low dose electron (nano) diffraction, energy-dispersive X-ray spectroscopy, and energy-filtered transmission electron microscopy, we have assigned crystal structures and chemical compositions to the fibers. Moreover, we demonstrate that the mineralization process yields true polymer/calcium phosphate hybrid materials where the block copolymer template is closely associated with the calcium phosphate. Y1 - 2013 U6 - https://doi.org/10.1039/c3ra23348k SN - 2046-2069 VL - 3 IS - 28 SP - 11301 EP - 11308 PB - Royal Society of Chemistry CY - Cambridge ER - TY - GEN A1 - Junginger, Mathias A1 - Kübel, Christian A1 - Schacher, Felix H. A1 - Müller, Axel H. E. A1 - Taubert, Andreas T1 - Crystal structure and chemical composition of biomimetic calcium phosphate nanofibers N2 - Calcium phosphate nanofibers with a diameter of only a few nanometers and a cotton-ball-like aggregate morphology have been reported several times in the literature. Although fiber formation seems reproducible in a variety of conditions, the crystal structure and chemical composition of the fibers have been elusive. Using scanning transmission electron microscopy, low dose electron (nano)diffraction, energy-dispersive X-ray spectroscopy, and energy-filtered transmission electron microscopy, we have assigned crystal structures and chemical compositions to the fibers. Moreover, we demonstrate that the mineralization process yields true polymer/calcium phosphate hybrid materials where the block copolymer template is closely associated with the calcium phosphate. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 244 KW - air-water-interface KW - polycationic monolayer KW - mineralization beneath KW - block-copolymers KW - aqueous-solution KW - morphology KW - orthophosphates KW - biomaterials KW - nucleation KW - clusters Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-95176 SP - 11301 EP - 11308 ER - TY - JOUR A1 - Kapernaum, Nadia A1 - Lange, Alyna A1 - Ebert, Max A1 - Grunwald, Marco A. A1 - Häge, Christian A1 - Marino, Sebastian A1 - Zens, Anna A1 - Taubert, Andreas A1 - Gießelmann, Frank A1 - Laschat, Sabine T1 - Current topics in ionic liquid crystals JF - ChemPlusChem N2 - Ionic liquid crystals (ILCs), that is, ionic liquids exhibiting mesomorphism, liquid crystalline phases, and anisotropic properties, have received intense attention in the past years. Among others, this is due to their special properties arising from the combination of properties stemming from ionic liquids and from liquid crystalline arrangements. Besides interesting fundamental aspects, ILCs have been claimed to have tremendous application potential that again arises from the combination of properties and architectures that are not accessible otherwise, or at least not accessible easily by other strategies. The current review highlights recent developments in ILC research, starting with some key fundamental aspects. Further subjects covered include the synthesis and variations of modern ILCs, including the specific tuning of their mesomorphic behavior. The review concludes with reflections on some applications that may be within reach for ILCs and finally highlights a few key challenges that must be overcome prior and during true commercialization of ILCs. KW - electrochemistry KW - ionic liquid crystals KW - mesogen mesophases KW - self-assembly KW - X-ray diffraction Y1 - 2021 U6 - https://doi.org/10.1002/cplu.202100397 SN - 2192-6506 VL - 87 IS - 1 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Kim, Jiyong A1 - Kim, Yohan A1 - Park, Kyoungwon A1 - Boeffel, Christine A1 - Choi, Hyung-Seok A1 - Taubert, Andreas A1 - Wedel, Armin T1 - Ligand Effect in 1-Octanethiol Passivation of InP/ZnSe/ZnS Quantum Dots-Evidence of Incomplete Surface Passivation during Synthesis JF - Small : nano micro N2 - The lack of anionic carboxylate ligands on the surface of InP/ZnSe/ZnS quantum dots (QDs), where zinc carboxylate ligands can be converted to carboxylic acid or carboxylate ligands via proton transfer by 1-octanethiol, is demonstrated. The as-synthesized QDs initially have an under-coordinated vacancy surface, which is passivated by solvent ligands such as ethanol and acetone. Upon exposure of 1-octanethiol to the QD surface, 1-octanethiol effectively induces the surface binding of anionic carboxylate ligands (derived from zinc carboxylate ligands) by proton transfer, which consequently exchanges ethanol and acetone ligands that bind on the incomplete QD surface. These systematic chemical analyses, such as thermogravimetric analysis-mass spectrometry and proton nuclear magnetic resonance spectroscopy, directly show the interplay of surface ligands, and it associates with QD light-emitting diodes (QD-LEDs). It is believed that this better understanding can lead to industrially feasible QD-LEDs. KW - colloidal quantum dots KW - incomplete surface passivation KW - indium KW - phosphide KW - surface chemistry KW - thiol passivation Y1 - 2022 U6 - https://doi.org/10.1002/smll.202203093 SN - 1613-6810 SN - 1613-6829 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Kim, Yohan A1 - Heyne, Benjamin A1 - Abouserie, Ahed A1 - Pries, Christopher A1 - Ippen, Christian A1 - Günter, Christina A1 - Taubert, Andreas A1 - Wedel, Armin T1 - CuS nanoplates from ionic liquid precursors-Application in organic photovoltaic cells JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr N2 - Hexagonal p-type semiconductor CuS nanoplates were synthesized via a hot injection method from bis(trimethylsilyl) sulfide and the ionic liquid precursor bis(N-dodecylpyridinium) tetrachloridocuprate( II). The particles have a broad size distribution with diameters between 30 and 680 nm and well-developed crystal habits. The nanoplates were successfully incorporated into organic photovoltaic (OPV) cells as hole conduction materials. The power conversion efficiency of OPV cells fabricated with the nanoplates is 16% higher than that of a control device fabricated without the nanoplates. (C) 2018 Author(s). Y1 - 2018 U6 - https://doi.org/10.1063/1.4991622 SN - 0021-9606 SN - 1089-7690 VL - 148 IS - 19 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Kind, Lucy A1 - Plamper, Felix A. A1 - Goebel, Ronald A1 - Mantion, Alexandre A1 - Mueller, Axel H. E. A1 - Pieles, Uwe A1 - Taubert, Andreas A1 - Meier, Wolfgang P. T1 - Silsesquioxane/polyamine nanoparticle-templated formation of star- or raspberry-like silica nanoparticles N2 - Silica is an important mineral in biology and technology, and many protocols have been developed for the synthesis of complex silica architectures. The current report shows that silsesquioxane nanoparticles carrying polymer arms on their surface are efficient templates for the fabrication of silica particles with a star- or raspberry-like morphology. The shape of the resulting particles depends on the chemistry of the polymer arms. With poly(N,N- dimethylaminoethyl methacrylate) (PDMAEMA) arms, spherical particles with a less electron dense core form. With poly {[2- (methacryloyloxy)ethyl] trimethylammonium iodide} (PMETAI), star- or raspberry-like particles form. Electron microscopy, electron tomography, and small-angle X-ray scattering show that the resulting silica particles have a complex structure, where a silsequioxane nanoparticle carrying the polymer arms is in the center. Next is a region that is polymer-rich. The outermost region of the particle is a silica layer, where the outer parts of the polymer arms are embedded. Time- resolved zeta-potential and pH measurements, dynamic light scattering, and electron microscopy reveal that silica formation proceeds differently if PDMAEMA is exchanged for PMETAI. Y1 - 2009 UR - http://pubs.acs.org/journal/langd5 U6 - https://doi.org/10.1021/La900229n SN - 0743-7463 ER - TY - JOUR A1 - Kirchhecker, Sarah A1 - Tröger-Müller, Steffen A1 - Bake, Sebastian A1 - Antonietti, Markus A1 - Taubert, Andreas A1 - Esposito, Davide T1 - Renewable pyridinium ionic liquids from the continuous hydrothermal decarboxylation of furfural-amino acid derived pyridinium zwitterions JF - Green chemistry : an international journal and green chemistry resource N2 - Fully renewable pyridinium ionic liquids were synthesised via the hydrothermal decarboxylation of pyridinium zwitterions derived from furfural and amino acids in flow. The functionality of the resulting ionic liquid (IL) can be tuned by choice of different amino acids as well as different natural carboxylic acids as the counter-ions. A representative member of this new class of ionic liquids was successfully used for the synthesis of ionogels and as a solvent for the Heck coupling. Y1 - 2015 U6 - https://doi.org/10.1039/c5gc00913h SN - 1463-9262 SN - 1463-9270 VL - 17 IS - 8 SP - 4151 EP - 4156 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Kirchhecker, Sarah A1 - Tröger-Müller, Steffen A1 - Bake, Sebastian A1 - Antonietti, Markus A1 - Taubert, Andreas A1 - Esposito, Davido T1 - Renewable pyridinium ionic liquids from the continuous hydrothermal decarboxylation of furfural-amino acid derived pyridinium zwitterions JF - Green chemistry N2 - Fully renewable pyridinium ionic liquids were synthesised via the hydrothermal decarboxylation of pyridinium zwitterions derived from furfural and amino acids in flow. The functionality of the resulting ionic liquid (IL) can be tuned by choice of different amino acids as well as different natural carboxylic acids as the counterions. A representative member of this new class of ionic liquids was successfully used for the synthesis of ionogels and as a solvent for the Heck coupling. Y1 - 2015 U6 - https://doi.org/10.1039/c5gc00913h SN - 1463-9262 SN - 1463-9270 VL - 8 IS - 17 SP - 4151 EP - 4156 PB - Royal Society of Chemistry CY - Cambridge ER - TY - GEN A1 - Kirchhecker, Sarah A1 - Tröger-Müller, Steffen A1 - Bake, Sebastian A1 - Antonietti, Markus A1 - Taubert, Andreas A1 - Esposito, Davido T1 - Renewable pyridinium ionic liquids from the continuous hydrothermal decarboxylation of furfural-amino acid derived pyridinium zwitterions N2 - Fully renewable pyridinium ionic liquids were synthesised via the hydrothermal decarboxylation of pyridinium zwitterions derived from furfural and amino acids in flow. The functionality of the resulting ionic liquid (IL) can be tuned by choice of different amino acids as well as different natural carboxylic acids as the counterions. A representative member of this new class of ionic liquids was successfully used for the synthesis of ionogels and as a solvent for the Heck coupling. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 198 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-81390 ER - TY - JOUR A1 - Kita-Tokarczyk, Katarzyna A1 - Junginger, Mathias A1 - Belegrinou, Serena A1 - Taubert, Andreas ED - Muller, AHE ED - Borisov, O T1 - Amphiphilic polymers at interfaces JF - Advances in polymer science JF - Advances in Polymer Science N2 - Self-assembly phenomena in block copolymer systems are attracting considerable interest from the scientific community and industry alike. Particularly interesting is the behavior of amphiphilic copolymers, which can self-organize into nanoscale-sized objects such as micelles, vesicles, or tubes in solution, and which form well-defined assemblies at interfaces such as air-liquid, air-solid, or liquid-solid. Depending on the polymer chemistry and architecture, various types of organization at interfaces can be expected, and further exploited for applications in nanotechnology, electronics, and biomedical sciences. In this article, we discuss the formation and characterization of Langmuir monolayers from various amphiphilic block copolymers, including chargeable and thus pH-responsivematerials. Solid-supported polymer films are reviewed in the context of alteration of surface properties by ultrathin polymer layers and the possibilities for application in tissue engineering, sensors and biomaterials. Finally, we focus on how organic and polymer monolayers influence the growth of inorganic materials. This is a truly biomimetic approach since Nature uses soft interfaces to control the nucleation, growth, and morphology of biominerals such as calcium phosphate, calcium carbonate, and silica. KW - Amphiphilic polymers KW - Langmuir monolayers KW - Polymers on surfaces KW - Bio-inspired mineralization Y1 - 2011 SN - 978-3-642-22297-9 U6 - https://doi.org/10.1007/12_2010_58 SN - 0065-3195 VL - 242 IS - 1 SP - 151 EP - 201 PB - Springer CY - Berlin ER - TY - JOUR A1 - Krüger, Stefanie A1 - Schwarze, Michael A1 - Baumann, Otto A1 - Günter, Christina A1 - Bruns, Michael A1 - Kübel, Christian A1 - Szabo, Dorothee Vinga A1 - Meinusch, Rafael A1 - Bermudez, Veronica de Zea A1 - Taubert, Andreas T1 - Bombyx mori silk/titania/gold hybrid materials for photocatalytic water splitting BT - combining renewable raw materials with clean fuels JF - Beilstein journal of nanotechnology N2 - The synthesis, structure, and photocatalytic water splitting performance of two new titania (TiO2)/gold(Au)/Bombyx mori silk hybrid materials are reported. All materials are monoliths with diameters of up to ca. 4.5 cm. The materials are macroscopically homogeneous and porous with surface areas between 170 and 210 m(2)/g. The diameter of the TiO2 nanoparticles (NPs) - mainly anatase with a minor fraction of brookite - and the Au NPs are on the order of 5 and 7-18 nm, respectively. Addition of poly(ethylene oxide) to the reaction mixture enables pore size tuning, thus providing access to different materials with different photocatalytic activities. Water splitting experiments using a sunlight simulator and a Xe lamp show that the new hybrid materials are effective water splitting catalysts and produce up to 30 mmol of hydrogen per 24 h. Overall the article demonstrates that the combination of a renewable and robust scaffold such as B. mori silk with a photoactive material provides a promising approach to new monolithic photocatalysts that can easily be recycled and show great potential for application in lightweight devices for green fuel production. KW - Bombyx mori silk KW - gold KW - photocatalytic water splitting KW - titania Y1 - 2018 U6 - https://doi.org/10.3762/bjnano.9.21 SN - 2190-4286 VL - 9 SP - 187 EP - 204 PB - Beilstein-Institut zur Förderung der Chemischen Wissenschaften CY - Frankfurt, Main ER - TY - GEN A1 - Krüger, Stefanie A1 - Schwarze, Michael A1 - Baumann, Otto A1 - Günter, Christina A1 - Bruns, Michael A1 - Kübel, Christian A1 - Szabó, Dorothée Vinga A1 - Meinusch, Rafael A1 - de Zea Bermudez, Verónica A1 - Taubert, Andreas T1 - Bombyx mori silk/titania/gold hybrid materials for photocatalytic water splitting BT - combining renewable raw materials with clean fuels T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - The synthesis, structure, and photocatalytic water splitting performance of two new titania (TiO 2 )/gold(Au)/Bombyx mori silk hybrid materials are reported. All materials are monoliths with diameters of up to ca. 4.5 cm. The materials are macroscopically homogeneous and porous with surface areas between 170 and 210 m 2/g. The diameter of the TiO 2 nanoparticles (NPs) – mainly anatase with a minor fraction of brookite – and the Au NPs are on the order of 5 and 7–18 nm, respectively. Addition of poly(ethylene oxide) to the reaction mixture enables pore size tuning, thus providing access to different materials with different photocatalytic activities. Water splitting experiments using a sunlight simulator and a Xe lamp show that the new hybrid materials are effective water splitting catalysts and produce up to 30 mmol of hydrogen per 24 h. Overall the article demonstrates that the combination of a renewable and robust scaffold such as B. mori silk with a photoactive material provides a promising approach to new monolithic photocatalysts that can easily be recycled and show great potential for application in lightweight devices for green fuel production. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 581 KW - Bombyx mori silk KW - gold KW - photocatalytic water splitting KW - titania Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-423499 SN - 1866-8372 IS - 581 ER - TY - GEN A1 - Lehmann, Frederike A1 - Binet, Silvia A1 - Franz, Alexandra A1 - Taubert, Andreas A1 - Schorr, Susan T1 - Cation and anion substitutions in hybrid perovskites BT - solubility limits and phase stabilizing effects T2 - 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC) N2 - Organic or inorganic (A) metal (M) halide (X) perovskites (AMX(3)) are semiconductor materials setting the basis for the development of highly efficient, low-cost and multijunction solar energy conversion devices. The best efficiencies nowadays are obtained with mixed compositions containing methylammonium, formamidinium, Cs and Rb as well as iodine, bromine and chlorine as anions. The understanding of fundamental properties such as crystal structure and its effect on the band gap, as well as their phase stability is essential. In this systematic study X-ray diffraction and photoluminescense spectroscopy were applied to evaluate structural and optoelectronic properties of hybrid perovskites with mixed compositions. Y1 - 2018 SN - 978-1-5386-8529-7 U6 - https://doi.org/10.1109/PVSC.2018.8547645 SN - 2159-2330 SN - 2159-2349 SP - 1555 EP - 1558 PB - IEEE CY - New York ER - TY - JOUR A1 - Lehmann, Frederike A1 - Franz, Alexandra A1 - Toebbens, Daniel M. A1 - Levcenco, Sergej A1 - Unold, Thomas A1 - Taubert, Andreas A1 - Schorr, Susan T1 - The phase diagram of a mixed halide (Br, I) hybrid perovskite obtained by synchrotron X-ray diffraction JF - RSC Advances N2 - By using synchrotron X-ray powder diffraction, the temperature dependent phase diagram of the hybrid perovskite tri-halide compounds, methyl ammonium lead iodide (MAPbI3, MA+ = CH3NH3+) and methyl ammonium lead bromide (MAPbBr3), as well as of their solid solutions, has been established. The existence of a large miscibility gap between 0.29 ≤ x ≤ 0.92 (±0.02) for the MAPb(I1−xBrx)3 solid solution has been proven. A systematic study of the lattice parameters for the solid solution series at room temperature revealed distinct deviations from Vegard's law. Furthermore, temperature dependent measurements showed that a strong temperature dependency of lattice parameters from the composition is present for iodine rich compositions. In contrast, the bromine rich compositions show an unusually low dependency of the phase transition temperature from the degree of substitution. Y1 - 2019 U6 - https://doi.org/10.1039/c8ra09398a SN - 2046-2069 VL - 9 IS - 20 SP - 11151 EP - 11159 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Leroux, Fabrice A1 - Rabu, Pierre A1 - Sommerdijk, Nico A. J. M. A1 - Taubert, Andreas T1 - Two-Dimensional Hybrid Materials: Transferring Technology from Biology to Society JF - European journal of inorganic chemistry : a journal of ChemPubSoc Europe N2 - Hybrid materials are at the forefront of modern research and technology; hence a large number of publications on hybrid materials has already appeared in the scientific literature. This essay focuses on the specifics and peculiarities of hybrid materials based on two-dimensional (2D) building blocks and confinements, for two reasons: (1) 2D materials have a very broad field of application, but they also illustrate many of the scientific challenges the community faces, both on a fundamental and an application level; (2) all authors of this essay are involved in research on 2D materials, but their perspective and vision of how the field will develop in the future and how it is possible to benefit from these new developments are rooted in very different scientific subfields. The current article will thus present a personal, yet quite broad, account of how hybrid materials, specifically 2D hybrid materials, will provide means to aid modern societies in fields as different as healthcare and energy. Y1 - 2015 U6 - https://doi.org/10.1002/ejic.201500153 SN - 1434-1948 SN - 1099-0682 IS - 7 SP - 1089 EP - 1095 PB - Wiley-VCH CY - Weinheim ER - TY - INPR A1 - Leroux, Fabrice A1 - Rabu, Pierre A1 - Sommerdijk, Nico A. J. M. A1 - Taubert, Andreas T1 - Hybrid Materials Engineering in Biology, Chemistry, and Physics T2 - European journal of inorganic chemistry : a journal of ChemPubSoc Europe N2 - The Guest Editors emphasize the rapidly growing research in advanced materials.Telecommunication, health and environment, energy and transportation, and sustainability are just a few examples where new materials have been key for technological advancement. Y1 - 2015 U6 - https://doi.org/10.1002/ejic.201500098 SN - 1434-1948 SN - 1099-0682 IS - 7 SP - 1086 EP - 1088 PB - Wiley-VCH CY - Weinheim ER - TY - GEN A1 - Li, Zhonghao A1 - Taubert, Andreas T1 - Cellulose/gold nanocrystal hybrids via an ionic liquid/aqueous precipitation route N2 - Injection of a mixture of HAuCl4 and cellulose dissolved in the ionic liquid (IL) 1-butyl-3-methylimidazolium chloride [Bmim]Cl into aqueous NaBH4 leads to colloidal gold nanoparticle/cellulose hybrid precipitates. This process is a model example for a very simple and generic approach towards (noble) metal/cellulose hybrids, which could find applications in sensing, sterile filtration, or as biomaterials. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 135 KW - Cellulose KW - Gold nanoparticles KW - Ionic liquid KW - Precipitation KW - Hybrid material Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-45046 ER - TY - JOUR A1 - Lutze, Jana A1 - Bañares, Miguel A. A1 - Pita, Marcos A1 - Haase, Andrea A1 - Luch, Andreas A1 - Taubert, Andreas T1 - alpha-((4-Cyanobenzoyl)oxy)-omega-methyl poly(ethylene glycol) BT - a new stabilizer for silver nanoparticles JF - Beilstein journal of nanotechnology N2 - The article describes the synthesis and properties of alpha-((4-cyanobenzoyl)oxy)-omega-methyl poly(ethylene glycol), the first poly(ethylene glycol) stabilizer for metal nanoparticles that is based on a cyano rather than a thiol or thiolate anchor group. The silver particles used to evaluate the effectiveness of the new stabilizer typically have a bimodal size distribution with hydrodynamic diameters of ca. 13 and ca. 79 nm. Polymer stability was evaluated as a function of the pH value both for the free stabilizer and for the polymers bound to the surface of the silver nanoparticles using H-1 NMR spectroscopy and zeta potential measurements. The polymer shows a high stability between pH 3 and 9. At pH 12 and higher the polymer coating is degraded over time suggesting that alpha-((4-cyanobenzoyl) oxy)-omega-methyl poly(ethylene glycol) is a good stabilizer for metal nanoparticles in aqueous media unless very high pH conditions are present in the system. The study thus demonstrates that cyano groups can be viable alternatives to the more conventional thiol/thiolate anchors. KW - cyano anchor group KW - poly(ethylene glycol) KW - polymer coating KW - silver nanoparticles Y1 - 2017 U6 - https://doi.org/10.3762/bjnano.8.67 SN - 2190-4286 VL - 8 SP - 627 EP - 635 PB - Beilstein-Institut zur Förderung der Chemischen Wissenschaften CY - Frankfurt, Main ER - TY - JOUR A1 - Löbbicke, Ruben A1 - Chanana, Munish A1 - Schlaad, Helmut A1 - Pilz-Allen, Christine A1 - Günter, Christina A1 - Möhwald, Helmuth A1 - Taubert, Andreas T1 - Polymer Brush Controlled Bioinspired Calcium Phosphate Mineralization and Bone Cell Growth JF - Biomacromolecules : an interdisciplinary journal focused at the interface of polymer science and the biological sciences N2 - Polymer brushes on thiol-modified gold surfaces were synthesized by using terminal thiol groups for the surface initiated free radical polymerization of methacrylic acid and dimethylaminotheyl methacrylate, respectively. Atomic force microscopy shows that the resulting poly(methacrylic acid (PMAA) and poly(dimethylaminothyl methacrylate) (PDM- AEMA) brushes are homogeneous. Contact angle measurements show that the brushes are pH responsive and can reversibly be protonated and deprotonated. Mineralization of the brushes with calcium phosphate at different pH yields homogeneously mineralized surfaces, and preosteoblastic cells proliferate-on be number of living cells on the mineralized hybrid surface is ca. 3 times (P corresponding nonmineralized brushes. Y1 - 2011 U6 - https://doi.org/10.1021/bm200991b SN - 1525-7797 VL - 12 IS - 10 SP - 3753 EP - 3760 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Mai, Tobias A1 - Boye, Susanne A1 - Yuan, Jiayin A1 - Voelkel, Antje A1 - Graewert, Marlies A1 - Günter, Christina A1 - Lederer, Albena A1 - Taubert, Andreas T1 - Poly(ethylene oxide)-based block copolymers with very high molecular weights for biomimetic calcium phosphate mineralization JF - RSC Advances N2 - The present article is among the first reports on the effects of poly(ampholyte)s and poly(betaine) s on the biomimetic formation of calcium phosphate. We have synthesized a series of di- and triblock copolymers based on a non-ionic poly(ethylene oxide) block and several charged methacrylate monomers, 2-(trimethylammonium) ethyl methacrylate chloride, 2-((3-cyanopropyl)-dimethylammonium)ethyl methacrylate chloride, 3-sulfopropyl methacrylate potassium salt, and [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl) ammonium hydroxide. The resulting copolymers are either positively charged, ampholytic, or betaine block copolymers. All the polymers have very high molecular weights of over 10(6) g mol(-1). All polymers are water-soluble and show a strong effect on the precipitation and dissolution of calcium phosphate. The strongest effects are observed with triblock copolymers based on a large poly(ethylene oxide) middle block (nominal M-n = 100 000 g mol(-1)). Surprisingly, the data show that there is a need for positive charges in the polymers to exert tight control over mineralization and dissolution, but that the exact position of the charge in the polymer is of minor importance for both calcium phosphate precipitation and dissolution. Y1 - 2015 U6 - https://doi.org/10.1039/c5ra20035k SN - 2046-2069 VL - 5 IS - 125 SP - 103494 EP - 103505 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Mai, Tobias A1 - Boye, Susanne A1 - Yuan, Jiayin A1 - Völkel, Antje A1 - Gräwert, Marlies A1 - Günter, Christina A1 - Lederer, Albena A1 - Taubert, Andreas T1 - Poly(ethylene oxide)-based block copolymers with very high molecular weights for biomimetic calcium phosphate mineralization JF - RSC Advances : an international journal to further the chemical sciences N2 - The present article is among the first reports on the effects of poly(ampholyte)s and poly(betaine)s on the biomimetic formation of calcium phosphate. We have synthesized a series of di- and triblock copolymers based on a non-ionic poly(ethylene oxide) block and several charged methacrylate monomers, 2-(trimethylammonium)ethyl methacrylate chloride, 2-((3-cyanopropyl)-dimethylammonium)ethyl methacrylate chloride, 3-sulfopropyl methacrylate potassium salt, and [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide. The resulting copolymers are either positively charged, ampholytic, or betaine block copolymers. All the polymers have very high molecular weights of over 106 g mol−1. All polymers are water-soluble and show a strong effect on the precipitation and dissolution of calcium phosphate. The strongest effects are observed with triblock copolymers based on a large poly(ethylene oxide) middle block (nominal Mn = 100 000 g mol−1). Surprisingly, the data show that there is a need for positive charges in the polymers to exert tight control over mineralization and dissolution, but that the exact position of the charge in the polymer is of minor importance for both calcium phosphate precipitation and dissolution. Y1 - 2015 U6 - https://doi.org/10.1039/c5ra20035k SN - 2046-2069 IS - 5 SP - 103494 EP - 103505 PB - RSC Publishing CY - London ER - TY - GEN A1 - Mai, Tobias A1 - Boye, Susanne A1 - Yuan, Jiayin A1 - Völkel, Antje A1 - Gräwert, Marlies A1 - Günter, Christina A1 - Lederer, Albena A1 - Taubert, Andreas T1 - Poly(ethylene oxide)-based block copolymers with very high molecular weights for biomimetic calcium phosphate mineralization N2 - The present article is among the first reports on the effects of poly(ampholyte)s and poly(betaine)s on the biomimetic formation of calcium phosphate. We have synthesized a series of di- and triblock copolymers based on a non-ionic poly(ethylene oxide) block and several charged methacrylate monomers, 2-(trimethylammonium)ethyl methacrylate chloride, 2-((3-cyanopropyl)-dimethylammonium)ethyl methacrylate chloride, 3-sulfopropyl methacrylate potassium salt, and [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide. The resulting copolymers are either positively charged, ampholytic, or betaine block copolymers. All the polymers have very high molecular weights of over 106 g mol−1. All polymers are water-soluble and show a strong effect on the precipitation and dissolution of calcium phosphate. The strongest effects are observed with triblock copolymers based on a large poly(ethylene oxide) middle block (nominal Mn = 100 000 g mol−1). Surprisingly, the data show that there is a need for positive charges in the polymers to exert tight control over mineralization and dissolution, but that the exact position of the charge in the polymer is of minor importance for both calcium phosphate precipitation and dissolution. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 208 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-85299 ER - TY - JOUR A1 - Mai, Tobias A1 - Rakhmatullina, Ekaterina A1 - Bleek, Katrin A1 - Boye, Susanne A1 - Yuan, Jiayin A1 - Voelkel, Antje A1 - Graewert, Marlies A1 - Cheaib, Zeinab A1 - Eick, Sigrun A1 - Günter, Christina A1 - Lederer, Albena A1 - Lussi, Adrian A1 - Taubert, Andreas T1 - Poly(ethylene oxide)-b-poly(3-sulfopropyl methacrylate) block copolymers for calcium phosphate mineralization and biofilm inhibition JF - Biomacromolecules : an interdisciplinary journal focused at the interface of polymer science and the biological sciences N2 - Poly(ethylene oxide) (PEO) has long been used as an additive in toothpaste, partly because it reduces biofilm formation on teeth. It does not, however, reduce the formation of dental calculus or support the remineralization of dental enamel or dentine. The present article describes the synthesis of new block copolymers on the basis of PEO and poly(3-sulfopropyl methacrylate) blocks using atom transfer radical polymerization. The polymers have very large molecular weights (over 10(6) g/mol) and are highly water-soluble. They delay the precipitation of calcium phosphate from aqueous solution but, upon precipitation, lead to relatively monodisperse hydroxyapatite (HAP) spheres. Moreover, the polymers inhibit the bacterial colonization of human enamel by Streptococcus gordonii, a pioneer bacterium in oral biofilm formation, in vitro. The formation of well-defined HAP spheres suggests that a polymer-induced liquid precursor phase could be involved in the precipitation process. Moreover, the inhibition of bacterial adhesion suggests that the polymers could be utilized in caries prevention. Y1 - 2014 U6 - https://doi.org/10.1021/bm500888q SN - 1525-7797 SN - 1526-4602 VL - 15 IS - 11 SP - 3901 EP - 3914 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Mai, Tobias A1 - Wolski, Karol A1 - Puciul-Malinowska, Agnieszka A1 - Kopyshev, Alexey A1 - Gräf, Ralph A1 - Bruns, Michael A1 - Zapotoczny, Szczepan A1 - Taubert, Andreas T1 - Anionic polymer brushes for biomimetic calcium phosphate mineralization BT - A surface with application potential in biomaterials JF - Polymers N2 - This article describes the synthesis of anionic polymer brushes and their mineralization with calcium phosphate. The brushes are based on poly(3-sulfopropyl methacrylate potassium salt) providing a highly charged polymer brush surface. Homogeneous brushes with reproducible thicknesses are obtained via surface-initiated atom transfer radical polymerization. Mineralization with doubly concentrated simulated body fluid yields polymer/inorganic hybrid films containing AB-Type carbonated hydroxyapatite (CHAP), a material resembling the inorganic component of bone. Moreover, growth experiments using Dictyostelium discoideum amoebae demonstrate that the mineral-free and the mineral-containing polymer brushes have a good biocompatibility suggesting their use as biocompatible surfaces in implantology or related fields. KW - polymer brushes KW - calcium phosphate KW - hydroxyapatite KW - carbonated apatite KW - bone mimic KW - biocompatibility KW - Dictyostelium discoideum Y1 - 2018 U6 - https://doi.org/10.3390/polym10101165 SN - 2073-4360 VL - 10 IS - 10 PB - MDPI CY - Basel ER - TY - JOUR A1 - Mantion, Alexandre A1 - Graf, Philipp A1 - Florea, Ileana A1 - Haase, Andrea A1 - Thuenemann, Andreas F. A1 - Masic, Admir A1 - Ersen, Ovidiu A1 - Rabu, Pierre A1 - Meier, Wolfgang P. A1 - Luch, Andreas A1 - Taubert, Andreas T1 - Biomimetic synthesis of chiral erbium-doped silver/peptide/silica core-shell nanoparticles (ESPN) JF - Nanoscale N2 - Peptide-modified silver nanoparticles have been coated with an erbium-doped silica layer using a method inspired by silica biomineralization. Electron microscopy and small-angle X-ray scattering confirm the presence of an Ag/peptide core and silica shell. The erbium is present as small Er(2)O(3) particles in and on the silica shell. Raman, IR, UV-Vis, and circular dichroism spectroscopies show that the peptide is still present after shell formation and the nanoparticles conserve a chiral plasmon resonance. Magnetic measurements find a paramagnetic behavior. In vitro tests using a macrophage cell line model show that the resulting multicomponent nanoparticles have a low toxicity for macrophages, even on partial dissolution of the silica shell. Y1 - 2011 U6 - https://doi.org/10.1039/c1nr10930h SN - 2040-3364 VL - 3 IS - 12 SP - 5168 EP - 5179 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Marquardt, Dorothea A1 - Xie, Zailai A1 - Taubert, Andreas A1 - Thomann, Ralf A1 - Janiak, Christoph T1 - Microwave synthesis and inherent stabilization of metal nanoparticles in 1-methyl-3-(3-carboxyethyl)-imidazolium tetrafluoroborate JF - Dalton transactions : a journal of inorganic chemistry, including bioinorganic, organometallic, and solid-state chemistry N2 - The synthesis of Co-NPs and Mn-NPs by microwave-induced decomposition of the metal carbonyls Co-2(CO)(8) and Mn-2(CO)(10), respectively, yields smaller and better separated particles in the functionalized IL 1-methyl-3-(3-carboxyethyl)-imidazolium tetrafluoroborate [EmimCO(2)H][BF4] (1.6 +/- 0.3 nm and 4.3 +/- 1.0 nm, respectively) than in the non-functionalized IL 1-n-butyl-3-methylimidazolium tetrafluoroborate [Bmim][BF4]. The particles are stable in the absence of capping ligands (surfactants) for more than six months although some variation in particle size could be observed by TEM. Y1 - 2011 U6 - https://doi.org/10.1039/c1dt10795j SN - 1477-9226 VL - 40 IS - 33 SP - 8290 EP - 8293 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Navarro, Salvador A1 - Shkilnyy, Andriy A1 - Tiersch, Brigitte A1 - Taubert, Andreas A1 - Menzel, Henning T1 - Preparation, characterization, and thermal gelation of amphiphilic alkyl-poly(ethyleneimine) N2 - Amphiphilic alkyl-poly(ethyleneimine)s (alkyl-PEI) with different degrees of polymerization have been produced by alkaline hydrolysis of alkyl-poly(2-methyl-2-oxazoline). Potentiometric titration of the alkyl-PEI shows the influence of the alkyl chain and the degree of polymerization on the titration curves and hence on the polymer conformation. Karl Fischer titration has been used to determine the water content in the polymers. Subsequent X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC) measurements prove the existence of different hydration states of the PEI even under dry storage conditions. Upon cooling from hot aqueous Solutions, hydrogels form. The gelation concentration decreases with increasing degree of polymerization of the PEI segment. Scanning electron microscopy (SEM and cryo-SEM) of the hydrogels reveal an alkyl-PEI fibrous network composed of fan-like units. DSC shows that the percentages of bound and free water in the hydrogels depend on the concentration of polar amino groups. Y1 - 2009 UR - http://pubs.acs.org/journal/langd5 U6 - https://doi.org/10.1021/La9013569 SN - 0743-7463 ER - TY - JOUR A1 - Neumann, Mike A1 - Noeske, Robert A1 - Taubert, Andreas A1 - Tiersch, Brigitte A1 - Strauch, Peter T1 - Highly structured, biomorphous beta-SiC with high specific surface area from Equisetaceae JF - Journal of materials chemistry N2 - Mesoporous, highly structured silicon carbide (beta-SiC) was synthesised from renewable plant materials (two Equisetaceae species) in a one-step carbothermal process at remarkably low temperatures down to 1200 degrees C. The SiC precursor is a silicon-carbon mixture with finely dispersed carbon prepared by pyrolysis of the organic plant matrix. Yields are 3 to 100% (omega(Si/Si) related to the silicon deposited in the plant material), depending on reaction temperature and time. IR spectroscopy, X-ray diffraction, and nitrogen sorption prove the formation of high-purity beta-SiC with minor inorganic impurities after purification and a high specific surface area of up to 660 m(2) g(-1). Scanning electron microscopy shows that the plant morphology is maintained in the final SiC. Sedimentation analysis finds a mean particle size (diameters d(50)) of 20 mu m. Y1 - 2012 U6 - https://doi.org/10.1039/c2jm30253e SN - 0959-9428 VL - 22 IS - 18 SP - 9046 EP - 9051 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Pan, Xuefeng A1 - Sarhan, Radwan Mohamed A1 - Kochovski, Zdravko A1 - Chen, Guosong A1 - Taubert, Andreas A1 - Mei, Shilin A1 - Lu, Yan T1 - Template synthesis of dual-functional porous MoS2 nanoparticles with photothermal conversion and catalytic properties JF - Nanoscale N2 - Advanced catalysis triggered by photothermal conversion effects has aroused increasing interest due to its huge potential in environmental purification. In this work, we developed a novel approach to the fast degradation of 4-nitrophenol (4-Nip) using porous MoS2 nanoparticles as catalysts, which integrate the intrinsic catalytic property of MoS2 with its photothermal conversion capability. Using assembled polystyrene-b-poly(2-vinylpyridine) block copolymers as soft templates, various MoS 2 particles were prepared, which exhibited tailored morphologies (e.g., pomegranate-like, hollow, and open porous structures). The photothermal conversion performance of these featured particles was compared under near-infrared (NIR) light irradiation. Intriguingly, when these porous MoS2 particles were further employed as catalysts for the reduction of 4-Nip, the reaction rate constant was increased by a factor of 1.5 under NIR illumination. We attribute this catalytic enhancement to the open porous architecture and light-to-heat conversion performance of the MoS2 particles. This contribution offers new opportunities for efficient photothermal-assisted catalysis. Y1 - 2022 U6 - https://doi.org/10.1039/d2nr01040b SN - 2040-3372 VL - 14 IS - 18 SP - 6888 EP - 6901 PB - RSC Publ. (Royal Society of Chemistry) CY - Cambridge ER - TY - JOUR A1 - Peh, Eddie A1 - Liedel, Clemens A1 - Taubert, Andreas A1 - Tauer, Klaus T1 - Composition inversion to form calcium carbonate mixtures JF - CrystEngComm N2 - Composition inversion takes place in equimolar solid mixtures of sodium or ammonium carbonate and calcium chloride with respect to the combination of anions and cations leading to the corresponding chloride and calcite in complete conversion. The transformation takes place spontaneously under a variety of different situations, even in a powdery mixture resting under ambient conditions. Powder X-ray diffraction data and scanning electron microscopy micrographs are presented to describe the course of the reaction and to characterize the reaction products. The incomplete reaction in the interspace between two compressed tablets of pure starting materials leads to an electric potential due to the presence of uncompensated charges. Y1 - 2017 U6 - https://doi.org/10.1039/c7ce00433h SN - 1466-8033 VL - 19 SP - 3573 EP - 3583 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Pereira, Rui F. P. A1 - Zehbe, Kerstin A1 - Günter, Christina A1 - dos Santos, Tiago A1 - Nunes, Silvia C. A1 - Almeida Paz, Filipe A. A1 - Silva, Maria M. A1 - Granja, Pedro L. A1 - Taubert, Andreas A1 - de Zea Bermudez, Verónica T1 - Ionic liquid-assisted synthesis of mesoporous silk fibroin/silica hybrids for biomedical applications JF - ACS Omega N2 - New mesoporous silk fibroin (SF)/silica hybrids were processed via a one-pot soft and energy-efficient sol-gel chemistry and self-assembly from a silica precursor, an acidic or basic catalyst, and the ionic liquid 1-butyl-3-methylimidazolium chloride, acting as both solvent and mesoporosity-inducer. The as-prepared materials were obtained as slightly transparent-opaque, amorphous monoliths, easily transformed into powders, and stable up to ca. 300 degrees C. Structural data suggest the formation of a hexagonal mesostructure with low range order and apparent surface areas, pore volumes, and pore radii of 205-263 m(2) g(-1), 0.16-0.19 cm(3) g(-1), and 1.2-1.6 nm, respectively. In all samples, the dominating conformation of the SF chains is the beta-sheet. Cytotoxicity/bioactivity resazurin assays and fluorescence microscopy demonstrate the high viability of MC3T3 pre-osteoblasts to indirect (>= 99 +/- 9%) and direct (78 +/- 2 to 99 +/- 13%) contact with the SF/silica materials. Considering their properties and further improvements, these systems are promising candidates to be explored in bone tissue engineering. They also offer excellent prospects as electrolytes for solid-state electrochemical devices, in particular for fuel cells. Y1 - 2018 U6 - https://doi.org/10.1021/acsomega.8b02051 SN - 2470-1343 VL - 3 IS - 9 SP - 10811 EP - 10822 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Prieto, Susana A1 - Shkilnyy, Andriy A1 - Rumplasch, Claudia A1 - Ribeiro, Artur A1 - Javier Arias, F. A1 - Carlos Rodriguez-Cabello, Jose A1 - Taubert, Andreas T1 - Biomimetic calcium phosphate mineralization with multifunctional elastin-like recombinamers JF - Biomacromolecules : an interdisciplinary journal focused at the interface of polymer science and the biological sciences N2 - Biomimetic hybrid materials based on a polymeric and an inorganic component such as calcium phosphate are potentially useful for bone repair. The current study reports on a new approach toward biomimetic hybrid materials using a set of recombinamers (recombinant protein materials obtained from a synthetic gene) as crystallization additive for calcium phosphate. The recombinamers contain elements from elastin, an elastic structural protein, and statherin, a salivary protein. Via genetic engineering, the basic elastin sequence was modified with the SN(A)15 domain of statherin, whose interaction with calcium phosphate is well-established. These new materials retain the biocompatibility, "smart" nature, and desired mechanical behavior of the elastin-like recombinamer (ELR) family. Mineralization in simulated body fluid (SBF) in the presence of these recombinamers reveals surprising differences. Two of the polymers inhibit calcium phosphate deposition (although they contain the statherin segment). In contrast, the third polymer, which has a triblock structure, efficiently controls the calcium phosphate formation, yielding spherical hydroxyapatite (HAP) nanoparticles with diameters from 1 to 3 nm after 1 week in SBF at 37 degrees C. However, at lower temperatures, no precipitation is observed with any of the polymers. The data thus suggest that the molecular design of ELRs containing statherin segments and the selection of an appropriate polymer structure are key parameters to obtain functional materials for the development of intelligent systems for hard tissue engineering and subsequent in vivo applications. Y1 - 2011 U6 - https://doi.org/10.1021/bm200287c SN - 1525-7797 VL - 12 IS - 5 SP - 1480 EP - 1486 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Salama, Ahmed A1 - Neumann, Mike A1 - Günter, Christina A1 - Taubert, Andreas T1 - Ionic liquid-assisted formation of cellulose/calcium phosphate hybrid materials JF - Beilstein journal of nanotechnology N2 - Cellulose/calcium phosphate hybrid materials were synthesized via an ionic liquid-assisted route. Scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, infrared spectroscopy, and thermogravimetric analysis/differential thermal analysis show that, depending on the reaction conditions, cellulose/hydroxyapatite, cellulose/ chlorapatite, or cellulose/monetite composites form. Preliminary studies with MC3T3-E1 pre-osteoblasts show that the cells proliferate on the hybrid materials suggesting that the ionic liquid-based process yields materials that are potentially useful as scaffolds for regenerative therapies. KW - biomineralization KW - calcium phosphate KW - carbohydrates KW - cellulose KW - hybrid materials KW - ionic liquid Y1 - 2014 U6 - https://doi.org/10.3762/bjnano.5.167 SN - 2190-4286 VL - 5 SP - 1553 EP - 1568 PB - Beilstein-Institut zur Förderung der Chemischen Wissenschaften CY - Frankfurt, Main ER - TY - GEN A1 - Schneider, Matthias A1 - Fritzsche, Nora A1 - Puciul-Malinowska, Agnieszka A1 - Balis, Andrzej A1 - Mostafa, Amr A1 - Bald, Ilko A1 - Zapotoczny, Szczepan A1 - Taubert, Andreas T1 - Surface etching of 3D printed poly(lactic acid) with NaOH: a systematic approach T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The article describes a systematic investigation of the effects of an aqueous NaOH treatment of 3D printed poly(lactic acid) (PLA) scaffolds for surface activation. The PLA surface undergoes several morphology changes and after an initial surface roughening, the surface becomes smoother again before the material dissolves. Erosion rates and surface morphologies can be controlled by the treatment. At the same time, the bulk mechanical properties of the treated materials remain unaltered. This indicates that NaOH treatment of 3D printed PLA scaffolds is a simple, yet viable strategy for surface activation without compromising the mechanical stability of PLA scaffolds. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1212 KW - surface modification KW - sodium hydroxide etching KW - poly(lactic acid) KW - 3D printing KW - roughness KW - wettability KW - erosion Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-525088 SN - 1866-8372 IS - 8 ER - TY - JOUR A1 - Schneider, Matthias A1 - Fritzsche, Nora A1 - Puciul-Malinowska, Agnieszka A1 - Balis, Andrzej A1 - Mostafa, Amr A1 - Bald, Ilko A1 - Zapotoczny, Szczepan A1 - Taubert, Andreas T1 - Surface etching of 3D printed poly(lactic acid) with NaOH: a systematic approach JF - Polymers N2 - The article describes a systematic investigation of the effects of an aqueous NaOH treatment of 3D printed poly(lactic acid) (PLA) scaffolds for surface activation. The PLA surface undergoes several morphology changes and after an initial surface roughening, the surface becomes smoother again before the material dissolves. Erosion rates and surface morphologies can be controlled by the treatment. At the same time, the bulk mechanical properties of the treated materials remain unaltered. This indicates that NaOH treatment of 3D printed PLA scaffolds is a simple, yet viable strategy for surface activation without compromising the mechanical stability of PLA scaffolds. KW - surface modification KW - sodium hydroxide etching KW - poly(lactic acid) KW - 3D printing KW - roughness KW - wettability KW - erosion Y1 - 2020 VL - 12 IS - 8 PB - MDPI CY - Basel ER - TY - JOUR A1 - Schneider, Matthias A1 - Fritzsche, Nora A1 - Puciul-Malinowska, Agnieszka A1 - Baliś, Andrzej A1 - Mostafa, Amr A1 - Bald, Ilko A1 - Zapotoczny, Szczepan A1 - Taubert, Andreas T1 - Surface etching of 3D printed poly(lactic acid) with NaOH BT - a systematic approach JF - Polymers N2 - The article describes a systematic investigation of the effects of an aqueous NaOH treatment of 3D printed poly(lactic acid) (PLA) scaffolds for surface activation. The PLA surface undergoes several morphology changes and after an initial surface roughening, the surface becomes smoother again before the material dissolves. Erosion rates and surface morphologies can be controlled by the treatment. At the same time, the bulk mechanical properties of the treated materials remain unaltered. This indicates that NaOH treatment of 3D printed PLA scaffolds is a simple, yet viable strategy for surface activation without compromising the mechanical stability of PLA scaffolds. KW - surface modification KW - sodium hydroxide etching KW - poly(lactic acid) KW - 3D KW - printing KW - roughness KW - wettability KW - erosion Y1 - 2020 U6 - https://doi.org/10.3390/polym12081711 SN - 2073-4360 VL - 12 IS - 8 PB - MDPI CY - Basel ER - TY - GEN A1 - Schneider, Matthias A1 - Günter, Christina A1 - Taubert, Andreas T1 - Co-deposition of a hydrogel/calcium phosphate hybrid layer on 3D printed poly(lactic acid) scaffolds via dip coating BT - Towards automated biomaterials fabrication T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The article describes the surface modification of 3D printed poly(lactic acid) (PLA) scaffolds with calcium phosphate (CP)/gelatin and CP/chitosan hybrid coating layers. The presence of gelatin or chitosan significantly enhances CP co-deposition and adhesion of the mineral layer on the PLA scaffolds. The hydrogel/CP coating layers are fairly thick and the mineral is a mixture of brushite, octacalcium phosphate, and hydroxyapatite. Mineral formation is uniform throughout the printed architectures and all steps (printing, hydrogel deposition, and mineralization) are in principle amenable to automatization. Overall, the process reported here therefore has a high application potential for the controlled synthesis of biomimetic coatings on polymeric biomaterials. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1057 KW - 3D printing KW - dip-coating KW - poly(lactic acid) KW - PLA KW - calcium phosphate KW - gelatin KW - chitosan KW - hydrogel KW - calcium phosphate hybrid material KW - biomaterials Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-474427 SN - 1866-8372 IS - 1057 ER - TY - JOUR A1 - Schneider, Matthias A1 - Günter, Christina A1 - Taubert, Andreas T1 - Co-deposition of a hydrogel/calcium phosphate hybrid layer on 3D printed poly(lactic acid) scaffolds via dip coating BT - Towards Automated Biomaterials Fabrication JF - Polymers N2 - The article describes the surface modification of 3D printed poly(lactic acid) (PLA) scaffolds with calcium phosphate (CP)/gelatin and CP/chitosan hybrid coating layers. The presence of gelatin or chitosan significantly enhances CP co-deposition and adhesion of the mineral layer on the PLA scaffolds. The hydrogel/CP coating layers are fairly thick and the mineral is a mixture of brushite, octacalcium phosphate, and hydroxyapatite. Mineral formation is uniform throughout the printed architectures and all steps (printing, hydrogel deposition, and mineralization) are in principle amenable to automatization. Overall, the process reported here therefore has a high application potential for the controlled synthesis of biomimetic coatings on polymeric biomaterials. KW - 3D printing KW - dip-coating KW - poly(lactic acid) KW - PLA KW - calcium phosphate KW - gelatin KW - chitosan KW - hydrogel KW - calcium phosphate hybrid material KW - biomaterials Y1 - 2018 U6 - https://doi.org/10.3390/polym10030275 SN - 2073-4360 VL - 10 IS - 3 PB - MDPI CY - Basel ER - TY - JOUR A1 - Schweizer, S. A1 - Schuster, T. A1 - Junginger, Matthias A1 - Siekmeyer, Gerd A1 - Taubert, Andreas T1 - Surface modification of ickel/Titanium Alloy and Titanium Surfaces via a Polyelectrolyte Multilayer/Calcium Phosphate Hybrid Coating N2 - The report shows that simple LbL deposition of positively charged chitosan and negatively charged heparin can be used to efficiently modify the native surface of both NiTi and Ti without any previous treatments. Moreover, mineralization of the polymer multilayers with calcium phosphate leads to surfaces with low contact angles around 70 and 20 degrees for NiTi and Ti, respectively. This suggests that a polymer multilayer/calcium phosphate hybrid coating could be useful for making NiTi or Ti implants that are at the same time antibacterial (via the chitosan), suppress blood clot formation (via the heparin), and favor fast endothelialization (via the improved surface hydrophilicity compared to the respective neat material). Y1 - 2010 UR - http://onlinelibrary.wiley.com/doi/10.1002/mame.200900347/pdf U6 - https://doi.org/10.1002/mame.200900347 SN - 1438-7492 ER - TY - JOUR A1 - Shkilnyy, Andriy A1 - Brandt, Jessica A1 - Mantion, Alexandre A1 - Paris, Oskar A1 - Schlaad, Helmut A1 - Taubert, Andreas T1 - Calcium phosphate with a channel-like morphology by polymer templating N2 - Calcium phosphate mineralization from aqueous solution in the presence of organic growth modifiers has been intensely studied in the recent past. This is mostly due to potential applications of the resulting composites in the biomaterials field. Polymers in particular are efficient growth modifiers. As a result, there has been a large amount of work on polymeric growth modifiers. Interestingly, however, relatively little work has been done on polycationic additives. The current paper shows that poly(ethylene oxide)b-poly(L-lysine) block copolymers lead to an interesting morphology of calcium phosphate precipitated at room temperature and subjected to a mild heat treatment at 85 degrees C. Electron microscopy, synchrotron X-ray diffraction, and porosity analysis show that a (somewhat) porous material with channel-like features forms. Closer inspection using transmission electron microscopy shows that the channels are probably not real channels. Much rather the morphology is the result of the aggregation of ca. 100-nm-sized rodlike primary particles, which changes upon drying to exhibit the observed channel-like features. Comparison experiments conducted in the absence of polymer and with poly(ethylene oxide)-b-poly(L-glutamate) show that these features only form in the presence of the polycationic poly(L-lysine) block, suggesting a distinct interaction of the polycation with either the crystal or the phosphate ions prior to mineralization. Y1 - 2009 UR - http://pubs.acs.org/journal/cmatex U6 - https://doi.org/10.1021/Cm803244z SN - 0897-4756 ER - TY - JOUR A1 - Shkilnyy, Andriy A1 - Gräf, Ralph A1 - Hiebl, Bernhard A1 - Neffe, Axel T. A1 - Friedrich, Alwin A1 - Hartmann, Juergen A1 - Taubert, Andreas T1 - Unprecedented, low cytotoxicity of spongelike calcium phosphate/poly(ethylene imine) hydrogel composites N2 - Covalently crosslinked PEI hydrogels are efficient templates for calcium phosphate mineralization in SBF. In contrast to the PEI hydrogels, non-crosslinked PEI does not lead to calcium phosphate nucleation and growth in SBF. The precipitate is a mixture of brushite and hydroxyapatite. The PEI/calcium phosphate composite material exhibits a sponge like morphology and a chemical composition that is interesting for implants. Cytotoxicity tests using Dictyostelium discoideum amoebae show that both the non-mineralized and mineralized hydrogels have a very low cytotoxicity. This suggests that next generation PEI hydrogels, where also the degradation products are non-toxic, could be interesting for biomedical applications. Y1 - 2009 UR - http://www3.interscience.wiley.com/cgi-bin/jhome/77002860 U6 - https://doi.org/10.1002/mabi.200800266 SN - 1616-5187 ER - TY - JOUR A1 - Shkilnyy, Andriy A1 - Schöne, Stefanie A1 - Rumplasch, Claudia A1 - Uhlmann, Annett A1 - Hedderich, Annett A1 - Günter, Christina A1 - Taubert, Andreas T1 - Calcium phosphate mineralization with linear poly(ethylene imine) a time-resolved study JF - Colloid and polymer science : official journal of the Kolloid-Gesellschaft N2 - We have earlier shown that linear poly(ethylene imine) (LPEI) is an efficient growth modifier for calcium phosphate mineralization from aqueous solution (Shkilnyy et al., Langmuir, 2008, 24 (5), 2102). The current study addresses the growth process and the reason why LPEI is such an effective additive. To that end, the solution pH and the calcium and phosphate concentrations were monitored vs. reaction time using potentiometric, complexometric, and photometric methods. The phase transformations in the precipitates and particle morphogenesis were analyzed by X-ray diffraction and transmission electron microscopy, respectively. All measurements reveal steep decreases of the pH, calcium, and phosphate concentrations along with a rapid precipitation of brushite nanoparticles early on in the reaction. Brushite transforms into hydroxyapatite (HAP) within the first 2 h, which is much faster than what is reported, for example, for calcium phosphate precipitated with poly(acrylic acid). We propose that poly(ethylene imine) acts as a proton acceptor (weak buffer), which accelerates the transformation from brushite to HAP by taking up the protons that are released from the calcium phosphate precipitate during the phase transformation. KW - Calcium phosphate KW - Polyethylene imine KW - Mineralization KW - Kinetics Y1 - 2011 U6 - https://doi.org/10.1007/s00396-011-2403-2 SN - 0303-402X VL - 289 IS - 8 SP - 881 EP - 888 PB - Springer CY - New York ER - TY - JOUR A1 - Si, Satyabrata A1 - Taubert, Andreas A1 - Mantion, Alexandre A1 - Rogez, Guillaume A1 - Rabu, Pierre T1 - Peptide-intercalated layered metal hydroxides effect of peptide chain length and side chain functionality on structural, optical and magnetic properties JF - Chemical science N2 - New hybrid materials have been prepared by grafting synthetic peptides in the interlayer spacing of Cu(II) and Co(II) layered simple hydroxides (LSHs). The interlayer spacing of the hybrids depends on the peptide chain length; the dependence is specific for the copper and cobalt-based hybrids. This suggests a metal-or LSH-specific interaction of the peptides with the respective inorganic layers. When tyrosine is present in the peptide, its fluorescence is quenched after grafting the peptide to the LSH. Studies of the luminescence vs. pH indicate deprotonation of the tyrosine moieties to tyrosinate at high pH, accompanied by the onset of luminescence. The luminescence increases with increasing OH- concentration, suggesting an application of the hybrids as chemical sensors. Moreover, the peptides influence the magnetic properties of the hybrids. The copper-based hybrids behave antiferromagnetically and the cobalt-based hybrids are ferrimagnets. Y1 - 2012 U6 - https://doi.org/10.1039/c2sc01087a SN - 2041-6520 VL - 3 IS - 6 SP - 1945 EP - 1957 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Tao, Lumi A1 - Liu, Yuchuan A1 - Wu, Dan A1 - Wei, Qiao-Hua A1 - Taubert, Andreas A1 - Xie, Zailai T1 - Luminescent Ionogels with Excellent Transparency, High Mechanical Strength, and High Conductivity JF - Nanomaterials N2 - The paper describes a new kind of ionogel with both good mechanical strength and high conductivity synthesized by confining the ionic liquid (IL) 1-butyl-3-methylimidazolium bis(trifluoromethane sulfonyl)imide ([Bmim][NTf₂]) within an organic–inorganic hybrid host. The organic–inorganic host network was synthesized by the reaction of methyltrimethoxysilane (MTMS), tetraethoxysilane (TEOS), and methyl methacrylate (MMA) in the presence of a coupling agent, offering the good mechanical strength and rapid shape recovery of the final products. The silane coupling agent 3-methacryloxypropyltrimethoxysilane (KH-570) plays an important role in improving the mechanical strength of the inorganic–organic hybrid, because it covalently connected the organic component MMA and the inorganic component SiO₂. Both the thermal stability and mechanical strength of the ionogel significantly increased by the addition of IL. The immobilization of [Bmim][NTf₂] within the ionogel provided the final ionogel with an ionic conductivity as high as ca. 0.04 S cm⁻¹ at 50 °C. Moreover, the hybrid ionogel can be modified with organosilica-modified carbon dots within the network to yield a transparent and flexible ionogel with strong excitation-dependent emission between 400 and 800 nm. The approach is, therefore, a blueprint for the construction of next-generation multifunctional ionogels. KW - ionic liquid KW - ionogel KW - carbon dots KW - organic–inorganic hybrid KW - luminescence KW - mechanical strength Y1 - 2020 U6 - https://doi.org/10.3390/nano10122521 SN - 2079-4991 VL - 10 IS - 12 PB - MDPI CY - Basel ER -