TY - JOUR A1 - Abouserie, Ahed A1 - Zehbe, Kerstin A1 - Metzner, Philipp A1 - Kelling, Alexandra A1 - Günter, Christina A1 - Schilde, Uwe A1 - Strauch, Peter A1 - Körzdörfer, Thomas A1 - Taubert, Andreas T1 - Alkylpyridinium Tetrahalidometallate Ionic Liquids and Ionic Liquid Crystals: Insights into the Origin of Their Phase Behavior JF - European journal of inorganic chemistry : a journal of ChemPubSoc Europe N2 - Six N-alkylpyridinium salts [CnPy](2)[MCl4] (n = 4 or 12 and M = Co, Cu, Zn) were synthesized, and their structure and thermal properties were studied. The [C4Py](2)[MCl4] compounds are monoclinic and crystallize in the space group P2(1)/n. The crystals of the longer chain analogues [C12Py](2)[MCl4] are triclinic and crystallize in the space group P (1) over bar. Above the melting temperature, all compounds are ionic liquids (ILs). The derivatives with the longer C12 chain exhibit liquid crystallinity and the shorter chain compounds only show a melting transition. Consistent with single-crystal analysis, electron paramagnetic resonance spectroscopy suggests that the [CuCl4](2-) ions in the Cu-based ILs have a distorted tetrahedral geometry. KW - Ionic liquids KW - Alkylpyridinium salts KW - Structure elucidation KW - Phase transitions Y1 - 2017 U6 - https://doi.org/10.1002/ejic.201700826 SN - 1434-1948 SN - 1099-0682 SP - 5640 EP - 5649 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Abouserie, Ahed A1 - Zehbe, Kerstin A1 - Metzner, Philipp A1 - Kelling, Alexandra A1 - Günter, Christina A1 - Schilde, Uwe A1 - Strauch, Peter A1 - Körzdörfer, Thomas A1 - Taubert, Andreas T1 - Alkylpyridinium Tetrahalidometallate Ionic Liquids and Ionic Liquid Crystals: Insights into the Origin of Their Phase Behavior JF - European journal of inorganic chemistry : a journal of ChemPubSoc Europe N2 - Six N-alkylpyridinium salts [CnPy](2)[MCl4] (n = 4 or 12 and M = Co, Cu, Zn) were synthesized, and their structure and thermal properties were studied. The [C4Py](2)[MCl4] compounds are monoclinic and crystallize in the space group P2(1)/n. The crystals of the longer chain analogues [C12Py](2)[MCl4] are triclinic and crystallize in the space group P (1) over bar. Above the melting temperature, all compounds are ionic liquids (ILs). The derivatives with the longer C12 chain exhibit liquid crystallinity and the shorter chain compounds only show a melting transition. Consistent with single-crystal analysis, electron paramagnetic resonance spectroscopy suggests that the [CuCl4](2-) ions in the Cu-based ILs have a distorted tetrahedral geometry. KW - Ionic liquids KW - Alkylpyridinium salts KW - Structure elucidation KW - Phase transitions Y1 - 2017 U6 - https://doi.org/10.1002/ejic.201700826 SN - 1434-1948 SN - 1099-0682 SP - 5640 EP - 5649 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Balischewski, Christian A1 - Choi, Hyung-Seok A1 - Behrens, Karsten A1 - Beqiraj, Alkit A1 - Körzdörfer, Thomas A1 - Gessner, Andre A1 - Wedel, Armin A1 - Taubert, Andreas T1 - Metal sulfide nanoparticle synthesis with ionic liquids state of the art and future perspectives JF - ChemistryOpen N2 - Metal sulfides are among the most promising materials for a wide variety of technologically relevant applications ranging from energy to environment and beyond. Incidentally, ionic liquids (ILs) have been among the top research subjects for the same applications and also for inorganic materials synthesis. As a result, the exploitation of the peculiar properties of ILs for metal sulfide synthesis could provide attractive new avenues for the generation of new, highly specific metal sulfides for numerous applications. This article therefore describes current developments in metal sulfide nano-particle synthesis as exemplified by a number of highlight examples. Moreover, the article demonstrates how ILs have been used in metal sulfide synthesis and discusses the benefits of using ILs over more traditional approaches. Finally, the article demonstrates some technological challenges and how ILs could be used to further advance the production and specific property engineering of metal sulfide nanomaterials, again based on a number of selected examples. KW - Ionic liquids KW - ionic liquid crystals KW - ionic liquid precursors KW - metal KW - sulfides KW - catalysis KW - electrochemistry KW - energy materials KW - LED KW - solar KW - cells Y1 - 2021 U6 - https://doi.org/10.1002/open.202000357 SN - 2191-1363 VL - 10 IS - 2 SP - 272 EP - 295 PB - Wiley-VCH CY - Weinheim ER - TY - GEN A1 - Bhattacharyya, Biswajit A1 - Balischewski, Christian A1 - Sperlich, Eric A1 - Günter, Christina A1 - Mies, Stefan A1 - Kelling, Alexandra A1 - Taubert, Andreas T1 - N-Butyl Pyridinium Diiodido Argentate(I) BT - A One-Dimensional Ag-I Network with Superior Solid-State Ionic Conductivity at Room Temperature T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - A new solid-state material, N-butyl pyridinium diiodido argentate(I), is synthesized using a simple and effective one-pot approach. In the solid state, the compound exhibits 1D ([AgI2](-))(n) chains that are stabilized by the N-butyl pyridinium cation. The 1D structure is further manifested by the formation of long, needle-like crystals, as revealed from electron microscopy. As the general composition is derived from metal halide-based ionic liquids, the compound has a low melting point of 100-101 degrees C, as confirmed by differential scanning calorimetry. Most importantly, the compound has a conductivity of 10(-6) S cm(-1) at room temperature. At higher temperatures the conductivity increases and reaches to 10(-4 )S cm(-1) at 70 degrees C. In contrast to AgI, however, the current material has a highly anisotropic 1D arrangement of the ionic domains. This provides direct and tuneable access to fast and anisotropic ionic conduction. The material is thus a significant step forward beyond current ion conductors and a highly promising prototype for the rational design of highly conductive ionic solid-state conductors for battery or solar cell applications. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1341 KW - AgI KW - ionic conductivity KW - Ionic liquids KW - thermal properties Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-604874 SN - 1866-8372 IS - 1341 ER - TY - JOUR A1 - Bhattacharyya, Biswajit A1 - Balischewski, Christian A1 - Sperlich, Eric A1 - Günter, Christina A1 - Mies, Stefan A1 - Kelling, Alexandra A1 - Taubert, Andreas T1 - N-Butyl Pyridinium Diiodido Argentate(I) BT - A One-Dimensional Ag-I Network with Superior Solid-State Ionic Conductivity at Room Temperature JF - Advanced materials interfaces N2 - A new solid-state material, N-butyl pyridinium diiodido argentate(I), is synthesized using a simple and effective one-pot approach. In the solid state, the compound exhibits 1D ([AgI2](-))(n) chains that are stabilized by the N-butyl pyridinium cation. The 1D structure is further manifested by the formation of long, needle-like crystals, as revealed from electron microscopy. As the general composition is derived from metal halide-based ionic liquids, the compound has a low melting point of 100-101 degrees C, as confirmed by differential scanning calorimetry. Most importantly, the compound has a conductivity of 10(-6) S cm(-1) at room temperature. At higher temperatures the conductivity increases and reaches to 10(-4 )S cm(-1) at 70 degrees C. In contrast to AgI, however, the current material has a highly anisotropic 1D arrangement of the ionic domains. This provides direct and tuneable access to fast and anisotropic ionic conduction. The material is thus a significant step forward beyond current ion conductors and a highly promising prototype for the rational design of highly conductive ionic solid-state conductors for battery or solar cell applications. KW - AgI KW - ionic conductivity KW - Ionic liquids KW - thermal properties Y1 - 2023 U6 - https://doi.org/10.1002/admi.202202363 SN - 2196-7350 VL - 10 IS - 12 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Taubert, Andreas T1 - Electrospinning of Ionogels: Current Status and Future Perspectives JF - European journal of inorganic chemistry : a journal of ChemPubSoc Europe N2 - Ionogels (IGs), also termed ion gels, are functional hybrid materials based on an ionic liquid (IL) and a polymeric, hybrid, or inorganic matrix. IGs combine the properties of the matrix such as mechanical strength with IL properties like high ionic conductivity, high thermal stability, or catalytic activity. IGs are thus attractive for many applications, but the vast majority of IGs made and published so far are bulk materials or dense films. Applications like sensing or catalysis, however, would benefit from IGs with high surface areas or defined surface morphologies or architectures. In spite of this, only relatively few examples of high-surface-area IGs have been made so far; this has mostly been achieved by electrospinning, which has proven to be a promising strategy towards advanced IGs. The current review discusses first developments and outlines the future potential of electrospun ionogels, predominantly from a materials and inorganic chemistry perspective. KW - Ionic liquids KW - Ionogels KW - Hybrid materials KW - Electrospinning KW - Heterogeneous catalysis KW - Sensors KW - Energy KW - Health Y1 - 2015 U6 - https://doi.org/10.1002/ejic.201402490 SN - 1434-1948 SN - 1099-0682 IS - 7 SP - 1148 EP - 1159 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Ziolkowski, Bartosz A1 - Bleek, Katrin A1 - Twamley, Brendan A1 - Fraser, Kevin J. A1 - Byrne, Robert A1 - Diamond, Dermot A1 - Taubert, Andreas T1 - Magnetic ionogels (MagIGs) based on iron oxide nanoparticles, poly(N-isopropylacrylamide), and the ionic liquid trihexyl(tetradecyl)phosphonium dicyanamide JF - European journal of inorganic chemistry : a journal of ChemPubSoc Europe N2 - Magnetic ionogels (MagIGs) were prepared from organosilane-coated iron oxide nanoparticles, N-isopropylacrylamide, and the ionic liquid trihexyl(tetradecyl)phosphonium dicyanamide. The ionogels prepared with the silane-modified nanoparticles are more homogeneous than ionogels prepared with unmodified magnetite particles. The silane-modified particles are immobilized in the ionogel and are resistant tonanoparticle leaching. The modified particles also render the ionogels mechanically more stable than the ionogels synthesized with unmodified nanoparticles. The ionogels respond to external permanent magnets and are therefore prototypes of a new soft magnetic actuator. KW - Magnetic properties KW - Nanotechnology KW - Iron KW - Ionic liquids KW - Ionogels Y1 - 2012 U6 - https://doi.org/10.1002/ejic.201200597 SN - 1434-1948 IS - 32 SP - 5245 EP - 5251 PB - Wiley-VCH CY - Weinheim ER -