TY - JOUR A1 - Abouserie, Ahed A1 - Zehbe, Kerstin A1 - Metzner, Philipp A1 - Kelling, Alexandra A1 - Günter, Christina A1 - Schilde, Uwe A1 - Strauch, Peter A1 - Körzdörfer, Thomas A1 - Taubert, Andreas T1 - Alkylpyridinium Tetrahalidometallate Ionic Liquids and Ionic Liquid Crystals: Insights into the Origin of Their Phase Behavior JF - European journal of inorganic chemistry : a journal of ChemPubSoc Europe N2 - Six N-alkylpyridinium salts [CnPy](2)[MCl4] (n = 4 or 12 and M = Co, Cu, Zn) were synthesized, and their structure and thermal properties were studied. The [C4Py](2)[MCl4] compounds are monoclinic and crystallize in the space group P2(1)/n. The crystals of the longer chain analogues [C12Py](2)[MCl4] are triclinic and crystallize in the space group P (1) over bar. Above the melting temperature, all compounds are ionic liquids (ILs). The derivatives with the longer C12 chain exhibit liquid crystallinity and the shorter chain compounds only show a melting transition. Consistent with single-crystal analysis, electron paramagnetic resonance spectroscopy suggests that the [CuCl4](2-) ions in the Cu-based ILs have a distorted tetrahedral geometry. KW - Ionic liquids KW - Alkylpyridinium salts KW - Structure elucidation KW - Phase transitions Y1 - 2017 U6 - https://doi.org/10.1002/ejic.201700826 SN - 1434-1948 SN - 1099-0682 SP - 5640 EP - 5649 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Abouserie, Ahed A1 - Zehbe, Kerstin A1 - Metzner, Philipp A1 - Kelling, Alexandra A1 - Günter, Christina A1 - Schilde, Uwe A1 - Strauch, Peter A1 - Körzdörfer, Thomas A1 - Taubert, Andreas T1 - Alkylpyridinium Tetrahalidometallate Ionic Liquids and Ionic Liquid Crystals: Insights into the Origin of Their Phase Behavior JF - European journal of inorganic chemistry : a journal of ChemPubSoc Europe N2 - Six N-alkylpyridinium salts [CnPy](2)[MCl4] (n = 4 or 12 and M = Co, Cu, Zn) were synthesized, and their structure and thermal properties were studied. The [C4Py](2)[MCl4] compounds are monoclinic and crystallize in the space group P2(1)/n. The crystals of the longer chain analogues [C12Py](2)[MCl4] are triclinic and crystallize in the space group P (1) over bar. Above the melting temperature, all compounds are ionic liquids (ILs). The derivatives with the longer C12 chain exhibit liquid crystallinity and the shorter chain compounds only show a melting transition. Consistent with single-crystal analysis, electron paramagnetic resonance spectroscopy suggests that the [CuCl4](2-) ions in the Cu-based ILs have a distorted tetrahedral geometry. KW - Ionic liquids KW - Alkylpyridinium salts KW - Structure elucidation KW - Phase transitions Y1 - 2017 U6 - https://doi.org/10.1002/ejic.201700826 SN - 1434-1948 SN - 1099-0682 SP - 5640 EP - 5649 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Awad, Duha Jawad A1 - Conrad, Franziska A1 - Koch, Andreas A1 - Friedrich, Alwin A1 - Poeppl, Andreas A1 - Strauch, Peter T1 - 2,2'-Bipyridin-1,2-dithiolat Gemischtligand-Komplexe : Systhese, Charakterisierung und EPR-Spektroskopie N2 - A series of new 2 2'-bipyridine/1 2-dithiolate transition metal complexes has been synthesised and characterised As 1,2-dithiolate ligands 1,2 dithiooxalate (dto) and 1 2-dithiosquarate (dtsq) were used It follows from the IR spectra that the multidentate dithiolate ligands coordinate exclusively via their sulfur atoms forming an MN2S2 coordination sphere The central metal ions (M) are Cu2+ Ni2+ Pd2+ Pt2+, and Zn2+ The complex [Cu-II(bpy)(dto)] could be studied by EPR spectroscopy and was measured as powder diamagnetically diluted in the isostructural [Ni-II(bpy)(dto)] host structure The spin density contribution calculated from the experimental parameters is compared with the electronic situation in the frontier orbitals namely in the semi occupied SOMO of the copper complex derived from quantum chemical calculations on different levels (EHT and DFT) Y1 - 2010 UR - http://www.znaturforsch.com/b.htm SN - 0932-0776 ER - TY - JOUR A1 - Awad, Duha Jawad A1 - Conrad, Franziska A1 - Koch, Andreas A1 - Schilde, Uwe A1 - Poeppl, Andreas A1 - Strauch, Peter T1 - 1,10-phenanthroline-dithiolate mixed ligand transition metal complexes : synthesis, characterization and EPR spectroscopy N2 - A series of new N2S2 mixed ligand transition metal complexes, where N-2 is phenanthroline and S-2 is 1,2- dithiooxalate (dto) or 1,2-dithiosquarate (dtsq), has been synthesized and characterized. IR spectra reveal that the 1,2- dithiolate ligands are coordinated via the sulfur atoms forming a N2S2 coordination sphere. The copper(II) complex [Cu(phen)(dto)] was studied by EPR spectroscopy as a diamagnetically diluted powder. The diamagnetic dilution resulted from doping of the copper complex into the isostructural host lattice of the nickel complex [Ni(phen)(dto)]. The electronic situation in the frontier orbitals of the copper complex calculated from the experimental data is compared to the results of EHT and DFT calculations. Furthermore, one side product, chlorobis(1,10-phenanthroline)copper(I) ethanol solvate hydrate [(phen)(2)CuCl]center dot C2H5OH center dot H2O, was formed by a reduction process and characterized by X-ray diffraction. In the crystal packing one-dimensional columns of dimers are formed, stabilized by significant pi-pi interactions. Y1 - 2010 UR - http://www.sciencedirect.com/science/journal/00201693 U6 - https://doi.org/10.1016/j.ica.2010.01.021 SN - 0020-1693 ER - TY - JOUR A1 - Awad, Duha Jawad A1 - Koch, Andreas A1 - Mickler, Wulfhard A1 - Schilde, Uwe A1 - Strauch, Peter T1 - EPR spectroscopy of 4, 4 '-Bis(tert-butyl)-2, 2 '-bipyridine-1, 2-dithiolatocuprates(II) in host lattices with different coordination geometries JF - Zeitschrift für anorganische und allgemeine Chemie N2 - A series of new heteroleptic MN2S2 transition metal complexes with M = Cu2+ for EPR measurements and as diamagnetic hosts Ni2+, Zn2+, and Pd2+ were synthesized and characterized. The ligands are N2 = 4, 4'-bis(tert-butyl)-2, 2'-bipyridine (tBu2bpy) and S2 =1, 2-dithiooxalate, (dto), 1, 2-dithiosquarate, (dtsq), maleonitrile-1, 2-dithiolate, or 1, 2-dicyanoethene-1, 2-dithiolate, (mnt). The CuII complexes were studied by EPR in solution and as powders, diamagnetically diluted in the isostructural planar [NiII(tBu2bpy)(S2)] or[PdII(tBu2bpy)(S2)] as well as in tetrahedrally coordinated[ZnII(tBu2bpy)(S2)] host structures to put steric stress on the coordination geometry of the central CuN2S2 unit. The spin density contributions for different geometries calculated from experimental parameters are compared with the electronic situation in the frontier orbital, namely in the semi-occupied molecular orbital (SOMO) of the copper complex, derived from quantum chemical calculations on different levels (EHT and DFT). One of the hosts, [NiII(tBu2bpy)(mnt)], is characterized by X-ray structure analysis to prove the coordination geometry. The complex crystallizes in a square-planar coordination mode in the monoclinic space group P21/a with Z = 4 and the unit cell parameters a = 10.4508(10) angstrom, b = 18.266(2) angstrom, c = 12.6566(12) angstrom, beta = 112.095(7)degrees. Oxidation and reductions potentials of one of the host complexes, [Ni(tBu2bpy)(mnt)], were obtained by cyclovoltammetric measurements. KW - 1 KW - 2-Dithiosquarate KW - 1 KW - 2-Dithiooxalate KW - 1 KW - 2-Dicyanoethene-1 KW - 2-dithiolate KW - 4 KW - 4'-Bis(tert-butyl)-2 KW - 2'-bipyridine KW - X-ray structure KW - EPR KW - Copper KW - Nickel KW - Zinc Y1 - 2012 U6 - https://doi.org/10.1002/zaac.201100517 SN - 0044-2313 VL - 638 IS - 6 SP - 965 EP - 975 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Awad, Duha Jawad A1 - Schilde, Uwe A1 - Strauch, Peter T1 - 4,4 '-Bis(tert-butyl)-2,2 '-bipyridinedichlorometal(II) - Synthesis, structure and EPR spectroscopy JF - Inorganica chimica acta : the international inorganic chemistry journal N2 - Due to the better solubility of the 4,4'-substituted bipyridine ligand a series of 4,4'0-bis(tert-butyl)-2,2'-bipyridinedichlorometal(II) complexes, [M(tbbpy)Cl(2)], with M = Cu, Ni, Zn, Pd, Pt was synthesised and characterised. The blue copper complex 4,4'-bis(tert-butyl)-2,2'-bipyridinedichlorocopper(II) was isolated in two different polymorphic forms, as prisms 1 with a solvent inclusion and solvent-free as needles 2. Both structures were determined by X-ray structure analysis. They crystallise in the monoclinic space group P2(1)/c with four molecules in the unit cell, but with different unit cells and packing motifs. Whereas in the prisms 1, with the unit cell parameters a = 12.1613(12), b = 10.6363(7), c = 16.3074(15) angstrom, eta = 94.446(8)degrees, the packing is dominated by intra-and intermolecular hydrogen bonds, in the needles 2, with a = 7.738(1), b = 18. 333(2), c = 13.291(3) angstrom, beta = 97.512(15)degrees, only intramolecular hydrogen bonds appear and the complex molecules are arranged in columns which are stabilised by p-p-stacking interactions. In both complexes the copper has a tetrahedrally distorted coordination sphere. These copper complexes were also studied by EPR spectroscopy in solution, as frozen glass and diamagnetically diluted powder with the analogue [Pd(tbbpy)Cl(2)] as host lattice. KW - 4,4 '-Bis(tert-butyl)-2,2 '-bipyridine KW - X-ray structure KW - EPR KW - Copper(II) KW - Transition metals Y1 - 2011 U6 - https://doi.org/10.1016/j.ica.2010.08.035 SN - 0020-1693 VL - 365 IS - 1 SP - 127 EP - 132 PB - Elsevier CY - Lausanne ER - TY - JOUR A1 - Ayi, Ayi A. A1 - Khare, Varsha A1 - Strauch, Peter A1 - Girard, Jèrôme A1 - Fromm, Katharina M. A1 - Taubert, Andreas T1 - On the chemical synthesis of titanium nanoparticles from ionic liquids N2 - We report on attempts towards the synthesis of titanium nanoparticles using a wet chemical approach in imidazolium-based ionic liquids (ILs) under reducing conditions. Transmission electron microscopy finds nanoparticles in all cases. UV/Vis spectroscopy confirms the nanoparticulate nature of the precipitate, as in all cases an absorption band between ca. 280 and 300 nm is visible. IR spectroscopy shows that even after extensive washing and drying, some IL remains adsorbed on the nanoparticles. Raman spectroscopy suggests the formation of anatase nanoparticles, but X-ray diffraction reveals that, possibly, amorphous titania forms or that the nanoparticles are so small that a clear structure assignment is not possible. The report thus shows that (possibly amorphous) titanium oxides even form under reducing conditions and that the chemical synthesis of titanium nanoparticles in ILs remains elusive. Y1 - 2010 UR - http://www.springerlink.com/content/101572 U6 - https://doi.org/10.1007/s00706-010-0403-4 SN - 0026-9247 ER - TY - JOUR A1 - Baumgartner, Jens A1 - Lesevic, Paul A1 - Kumari, Monika A1 - Halbmair, Karin A1 - Bennet, Mathieu A1 - Koernig, Andre A1 - Widdrat, Marc A1 - Andert, Janet A1 - Wollgarten, Markus A1 - Bertinetti, Luca A1 - Strauch, Peter A1 - Hirt, Ann A1 - Faivre, Damien T1 - From magnetotactic bacteria to hollow spirilla-shaped silica containing a magnetic chain JF - RSC Advances N2 - Magnetotactic bacteria produce chains of magnetite nanoparticles, which are called magnetosomes and are used for navigational purposes. We use these cells as a biological template to prepare a hollow hybrid material based on silica and magnetite, and show that the synthetic route is nondestructive as the material conserves the cell morphology as well as the alignment of the magnetic particles. The hybrid material can be resuspended in aqueous solution, and can be shown to orient itself in an external magnetic field. We anticipate that chemical modification of the silica can be used to functionalize the material surface in order to obtain multifunctional materials with specialized applications, e.g. targeted drug delivery. Y1 - 2012 U6 - https://doi.org/10.1039/c2ra20911j SN - 2046-2069 VL - 2 IS - 21 SP - 8007 EP - 8009 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Farra, Ramzi A1 - Thiel, Kerstin A1 - Winter, Alette A1 - Klamroth, Tillmann A1 - Poeppl, Andreas A1 - Kelling, Alexandra A1 - Schilde, Uwe A1 - Taubert, Andreas A1 - Strauch, Peter T1 - Tetrahalidocuprates(II)-structure and EPR spectroscopy Part 1: Tetrabromidocuprates(II) JF - New journal of chemistry N2 - Tetrahalidocuprates(II) show a high degree of structural flexibility. We present the results of crystallographic and electron paramagnetic resonance (EPR) spectroscopic analyses of four new tetrabromidocuprate(II) compounds and compare the results with previously reported data. The cations in the new compounds are the sterically demanding benzyltriphenylphosphonium, methyltriphenylphosphonium, tetraphenylphosphonium, and hexadecyltrimethylammonium ions; they were used to achieve a reasonable separation of the paramagnetic Cu(II) ions for EPR spectroscopy. X-Ray crystallography shows that in all four complexes the [CuBr4](2-) units have a distorted tetrahedral coordination geometry which is in agreement with DFT calculations. The EPR hyperfine structure was not resolved. This is due to the exchange broadening resulting from still incomplete separation of the paramagnetic Cu(II) centres. Nevertheless, the principal values of the electron Zeemann tensor (g(parallel to) and g(perpendicular to)) of the complexes could be determined. A correlation of structural (X-ray) parameters with the spin density at the copper centres (DFT) is well reflected in the EPR spectra of the bromidocuprates. This enables the correlation of X-ray and EPR parameters to predict the structure of tetrabromidocuprates in physical states other than the crystalline state. As a result, we provide a method to structurally characterize [CuBr4](2-) in, for example, ionic liquids or in solution, which has important implications for e.g. catalysis or materials science. Y1 - 2011 U6 - https://doi.org/10.1039/c1nj20271e SN - 1144-0546 VL - 35 IS - 12 SP - 2793 EP - 2803 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Fischer, Sabrina A1 - Schmidt, Johannes A1 - Strauch, Peter A1 - Thomas, Arne T1 - An anionic microporous polymer network prepared by the polymerization of weakly coordinating anions JF - Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition KW - borates KW - conjugated microporous polymers KW - covalent organic frameworks KW - ion exchange KW - weakly coordinating ions Y1 - 2013 U6 - https://doi.org/10.1002/anie.201303045 SN - 1433-7851 SN - 1521-3773 VL - 52 IS - 46 SP - 12174 EP - 12178 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Ghaisari, Sara A1 - Winklhofer, Michael A1 - Strauch, Peter A1 - Klumpp, Stefan A1 - Faivre, Damien T1 - Magnetosome Organization in Magnetotactic Bacteria Unraveled by Ferromagnetic Resonance Spectroscopy JF - Biophysical journal N2 - Magnetotactic bacteria form assemblies of magnetic nanoparticles called magnetosomes. These magnetosomes are typically arranged in chains, but other forms of assemblies such as clusters can be observed in some species and genetic mutants. As such, the bacteria have developed as a model for the understanding of how organization of particles can influence the magnetic properties. Here, we use ferromagnetic resonance spectroscopy to measure the magnetic anisotropies in different strains of Magnetosprillum gtyphiswaldense MSR-1, a bacterial species that is amendable to genetic mutations. We combine our experimental results with a model describing the spectra. The model includes chain imperfections and misalignments following a Fisher distribution function, in addition to the intrinsic magnetic properties of the magnetosomes. Therefore, by applying the model to analyze the ferromagnetic resonance data, the distribution of orientations in the bulk sample can be retrieved in addition to the average magnetosome arrangement. In this way, we quantitatively characterize the magnetosome arrangement in both wild-type cells and Delta mamJ mutants, which exhibit differing magnetosome organization. Y1 - 2017 U6 - https://doi.org/10.1016/j.bpj.2017.06.031 SN - 0006-3495 SN - 1542-0086 VL - 113 SP - 637 EP - 644 PB - Cell Press CY - Cambridge ER - TY - JOUR A1 - Guelzow, Jana A1 - Hoerner, Gerald A1 - Strauch, Peter A1 - Stritt, Anika A1 - Irran, Elisabeth A1 - Grohmann, Andreas T1 - Oxygen Delivery as a Limiting Factor in Modelling Dicopper(II) Oxidase Reactivity JF - Chemistry - a European journal N2 - Deprotonation of ligand-appended alkoxyl groups in mononuclear copper(II) complexes of N,O ligands L-1 and L-2, gave dinuclear complexes sharing symmetrical Cu2O2 cores. Molecular structures of these mono-and binuclear complexes have been characterized by XRD, and their electronic structures by UV/Vis, H-1 NMR, EPR and DFT; moreover, catalytic performance as models of catechol oxidase was studied. The binuclear complexes with anti-ferromagnetically coupled copper(II) centers are moderately active in quinone formation from 3,5-di-tert-butyl-catechol under the estab-lished conditions of oxygen saturation, but are strongly activated when additional dioxygen is administered during catalytic turnover. This unforeseen and unprecedented effect is attributed to increased maximum reaction rates v(max), whereas the substrate affinity KM remains unaffected. Oxygen administration is capable of (partially) removing limitations to turnover caused by product inhibition. Because product inhibition is generally accepted to be a major limitation of catechol oxidase models, we think that our observations will be applicable more widely. Y1 - 2017 U6 - https://doi.org/10.1002/chem.201605868 SN - 0947-6539 SN - 1521-3765 VL - 23 SP - 7009 EP - 7023 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Halaska, Jozef A1 - Pevec, Andrej A1 - Strauch, Peter A1 - Kozlevcar, Bojan A1 - Koman, Marian A1 - Moncol, Jan T1 - Supramolecular hydrogen-bonding networks constructed from copper(II) chlorobenzoates with nicotinamide - Structure and EPR JF - Polyhedron : the international journal of inorganic and organometallic chemistry N2 - Nicotinamide (nia) has been employed as a supramolecular reagent in the synthesis of four copper(II) chloro- and dichlorobenzoate (Clbz/Cl(2)bz) complexes. The structures of the compounds [Cu(2-Clbz)(2) (nia)(2)(H2O)(2)] (1), icu(4-clbz)(2)(nia)(2)(H2O)(2)] (2), [Cu(3,5-Cl(2)bz)(2)(nia)(2)(H2O)(2)] (3), and [Cu(2,5-Cl(2)bz)(2) (nia)(2)(H2O)]center dot H2O (4) were determined. All the investigated compounds 1-4 reveal water molecules as coordinated. Their structures show distorted octahedral chromophores (CuN2O2O)-N-II'(2), though some are better described as square-planar or square-pyramid due to a large deviation of the axial ligand away from the octahedral z-axis along with different Cu center dot center dot center dot O (axial) lengths. The equatorial positions are occupied in all four cases by two nitrogen (nia-py) atoms and two carboxylate oxygen atoms of two Clbz/Cl(2)bz ligands, while the axial positions are occupied by water molecules. The EPR spectra reveal for all 1-4 compounds a spin state of S = 1/2, mostly with axial symmetry of the spectra. Their resolution is clearly dependant to the crystal symmetry related equivalence of the magnetic sites. The coordination molecules of all compounds are connected by N-H center dot center dot center dot O and O-H center dot center dot center dot O H-bonds from nicotinamide NH2 groups, carboxylate anions and/or water molecules, which create supramolecular chains or further H-bonded into 2D sheets. Steric hindering of the chlorine atoms of the Clbz/Cl(2)bz, especially seen at the coordination of the water molecules, demonstrates its role at the coordination sphere appearance. Despite this influence, the water molecules in 1-4 always assist at the similar supramolecular H-bonded network, almost at the same manner. KW - Copper(II) complexes KW - Nicotinamide KW - Crystal structure KW - EPR Y1 - 2013 U6 - https://doi.org/10.1016/j.poly.2013.05.032 SN - 0277-5387 VL - 61 SP - 20 EP - 26 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Kozlevcar, Bojan A1 - Gamez, Patrick A1 - de Gelder, Rene A1 - Jaglicic, Zvonko A1 - Strauch, Peter A1 - Kitanovski, Nives A1 - Reedijk, Jan T1 - Counterion and solvent effects on the primary coordination sphere of copper(II) Bis(3,5-dimethylpyrazol-1-yl)acetic acid coordination compounds JF - European journal of inorganic chemistry : a journal of ChemPubSoc Europe N2 - Four copper(II) coordination compounds with the neutral ligand bis(3,5-dimethylpyrazol-1-yl)acetic acid (Hbdmpza, C(12)H(16)N(4)O(2)) and its anionic form (bdmpza(-)), namely [Cu(Hbdmpza)(2)](HSO(4))(2) (1), [Cu(Hbdmpza)(2)]Cl(2) (2), [Cu(bdmpza)(2)](CH(3)COOH)(H(2)O) (3), and [Cu(bdmpza)(2)][Cu(2)(O(2)CCH(3))(4)] (4) have been synthesized starting from different metal salts. All the compounds have been fully characterized by physical and analytical methods. In addition, a single-crystal XRD analysis revealed the 3D structure of 1, which exhibits tridentate, vicinal N,N,O-coordination of two symmetry-related Hbdmpza ligands in an elongated octahedral arrangement with four equatorial nitrogen atoms and two axial oxygen atoms. The neutral carboxylic moiety acts as a hydrogen-bond donor to a HSO(4)(-) counterion. The two hydrogensulfates form a unique hydrogen-bonded pair (HSO(4)(-))(2) with very short O center dot center dot center dot O distances (2.59 angstrom) bridged between adjacent [Cu(HL)(2)](2+) coordination units. Also a short O center dot center dot center dot O contact (2.54 angstrom) is present between the C-OH and an 0 of a hydrogensulfate. A characteristic IR C=O vibration is observed at 1700 cm(-1) for 1 and 2, whereas the v(as)(O(2)C) vibration is present at 1650 cm(-1) for 3 and 4. These IR data strongly suggest the presence of Hbdmpza ligands in 1 and 2 and the deprotonated form bdmpza- in 3 and 4. A mononuclear coordination unit [CuL(2)], as proven for 1 by X-ray diffraction, is also proposed for the other compounds 2-4. In compound 4, an additional dinuclear [Cu(2)(O(2)CCH(3))(4)] neutral coordination unit is present, as deduced from the vibration bands v(as)(O(2)C) at 1600 cm(-1) and v(s)(O(2)C) at 1420 cm(-1), which are typical of a carboxylate function, and from the two-species analysis of the chi(M)T(T) curve of the magnetic susceptibility data (2J = -322 cm(-1)). Also, the EPR spectra recorded at different temperatures agree with this structure. KW - Copper KW - Coordination modes KW - Hydrogen bonds KW - Counterions KW - Solvent effects Y1 - 2011 U6 - https://doi.org/10.1002/ejic.201100410 SN - 1434-1948 IS - 24 SP - 3650 EP - 3655 PB - Wiley-Blackwell CY - Malden ER - TY - JOUR A1 - Kozlevcar, Bojan A1 - Golobic, Amalija A1 - Strauch, Peter T1 - Dynamic pseudo Jahn-Teller distortion in a compressed octahedral CuO6 complex JF - Polyhedron : the international journal of inorganic and organometallic chemistry N2 - The crystal structure of cis-[Cu(C8H7O3)(2)(H2O)(2)] (115 K data) reveals bidentate vanillinate ions coordinated via methoxy and deprotonated hydroxy oxygen atoms and water molecules in a distorted octahedral CuO6 chromophore. A cis orientation of the ligands enables two non-identical O(methoxy)-Cu-O(water) coordination axes (2.354(l) + 2.163(1); 2.151(1) + 2.020(1) angstrom), and the third shortest O(hydroxy)-Cu-O(hydroxy) axis (1.919(1) + 1.914(1) angstrom). This 115 K coordination sphere differs importantly to the one obtained from the 293 K data of the same compound, where two long 0(methoxy)-Cu-O(water) axes are of the same length, and only minor changes at the short 0(hydroxy)-Cu-O(hydroxy) axis are noticed. An axial symmetry of the complex with an inverse g(1.2)(g(perpendicular to)) > g(3)(g(parallel to)) pattern is observed in the temperature range from 298 to 180 K. A further decrease of temperature reveals gradual changes from axial to rhombic symmetry (g(1) > g(2) > g(3)) that is reversible. A mean-square displacement amplitude (MDSA) analysis reveals a disorder in the Cu-O(methoxy) bonds, but not in the other metal-ligand Cu-O(hydroxy) and Cu-O(water) bonds at 293 and 115 K. The disorder is significantly weaker in the 115 K structure. The MSDA analysis and the structural-EPR agreement show vibrational disorder in two coordination axes, due to the cis conformation of the complex with two 0(methoxy)-Cu-O(water) axes. KW - copper KW - vanillin KW - Jahn-Teller distortion KW - MSDA KW - cis KW - EPR Y1 - 2006 U6 - https://doi.org/10.1016/j.poly.2006.04.009 SN - 0277-5387 VL - 25 IS - 15 SP - 2824 EP - 2828 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Kozlevcar, Bojan A1 - Humar, M. B. A1 - Strauch, Peter A1 - Leban, I T1 - Fixation of copper(II) ions in aqueous solution to lignin model compound vanillin in an absence of the nitrogen donor ligands : structural and EPR correlation N2 - In order to elucidate the interactions of copper with wood, three mononuclear copper(II) coordination compounds with a vanillinate anion, cis-[Cu(C8H7O3)(2)(H2O)(2)] (1), trans-[Cu(C8H7O3)(2)(H2O)(2)].2H(2)O (2), and trans- [Cu(C8H7O3)(2)(H2O)(2)] (3), have been characterized. X-ray structure analysis of the cis isomer 1 reveals two bidentate vanillinate ions coordinated via methoxy (Cu-O1 2.260(2) angstrom) and deprotonated hydroxy oxygen atoms (Cu-O2 1.909(2) angstrom), and two water molecules (Cu-O1w 2.087(2) angstrom) in the octahedral CuO6 chromophore. Two axes O1-Cu- O1w' in the octahedron have the same length, while the third axis O2-Cu-O2' is shorter. This is in agreement with the room temperature EPR spectrum of 1, showing two signals (g(12) 2.302, g(3) 2.005), but interestingly, three signals (g(1) 2.393, g(2) 2.214, g(3) 2.010) in the 115 K spectrum were found. The same coordination atoms were found also in the trans isomer 2 (Cu-O2 1.950(2), Cu-O1w 1.994(2), Cu-O1 2.334(2) angstrom), however here, two axes of almost equal length are short (O2-Cu-O2' O1w-Cu-O1w'), while the third axis is longer (O1-Cu-O1'). On the other hand, three (rhombic) signals (g(1) 2.289, g(2) 2.163, g(3) 2.086) in the room temperature EPR spectrum of 2 suggest three different axes in the coordination octahedron. In the EPR spectrum, of the second trans complex 3, a slightly rhombically distorted elongated axial spectrum is found. The 115 K EPR spectra of the two trans complexes 2 and 3 do not differ significantly from the features observed at room temperature. These results indicate that there is not always a straightforward correlation between the results of XRD structure analysis and EPR spectroscopy. Nevertheless, both methods can act also complementarily and give a deeper insight into the nature of copper(II) chromophores Y1 - 2005 ER - TY - JOUR A1 - Kozlevcar, Bojan A1 - Kovsca, Igor A1 - Jaglicic, Zvonko A1 - Pevec, Andrej A1 - Kitanovski, Nives A1 - Strauch, Peter A1 - Segedin, Primoz T1 - Strong antiferromagnetism in isolated anionic dicopper(II) methanoato paddle-wheel complex Y1 - 2009 UR - http://public.carnet.hr/ccacaa/ SN - 0011-1643 ER - TY - JOUR A1 - Kozlevcar, Bojan A1 - Kovsca, Igor A1 - Jaglicic, Zvonko A1 - Pevec, Andrej A1 - Kitanovski, Nives A1 - Strauch, Peter A1 - èegedin, Primož T1 - Strong antiferromagnetism in isolated anionic dicopper(II) methanoato paddle-wheel complex N2 - A new ionic compound (C5H6NO)(2)[CU2(mu-O2CH)(4)(O2CH)(2)], 1 formed of 4-hydroxypyridinium cations and a complex anion was synthesized. The anion is a paddle-wheel dicopper carboxylate complex with four syn,syn-bridging and two axial anionic methanoato ligands. The XRD structure determination of 1 reveals that the molecular structure is stabilized by two H-bonds between the cations and the axial paddle-wheel anions (N-H center dot center dot center dot O 2.755(3), O-H center dot center dot center dot O 2.489(2) angstrom). The compound exhibits a very strong (2J = 500 cm(- 1)) intra-binuclear anti ferromagnetic interaction noticed already at room temperature attributed to the methanoato intra-binuclear bridges. The typical EPR S = 1 spin system signals of the dicopper paddle-wheel complexes at 90 and 450- 700 mT are found in the room temperature spectrum, but they are poorly seen in the 110 K spectrum. These signals are of very low intensity and are accompanied by a dominant signal at 320 mT, all closely related to a very strong anti ferromagnetic interaction present in 1. Y1 - 2009 UR - http://public.carnet.hr/ccacaa/ SN - 0011-1643 ER - TY - JOUR A1 - Kozlevcar, Bojan A1 - Mate, Elizabeta A1 - Jaglicic, Zvonko A1 - Glažar, Lea A1 - Golobic, Amalija A1 - Strauch, Peter A1 - Moncol, Jan A1 - Kitanovski, Nives A1 - èegedin, Primož T1 - A small methanoato ligand in the structural differentiation of copper(II) complexes N2 - Several copper(II) methanoato complexes, namely mononuclear [Cu(O2CH)(2)(2-mpy)(2)] (1) (2-mpy = 2- methylpyridine), binuclear [Cu-2(mu-O2CH)(4)(2-mpy)(2)] (2), and the polynuclear {[Cu(mu-O2CH)(2)(2-mpy)(2)] [Cu-2(mu- O2CH)(4)]}(n) (3) and {Na-2[Cu(mu-O2CH)(2)(O2CH)(2)][Cu-2(mu-O2CH)(4)]}(n) (4), have been synthesized. The mononuclear complex I is formed by two asymmetric chelate methanoate anions and two 2-methylpyridine molecules, giving a highly distorted 'elongated octahedral' coordination sphere. Complex I decomposes outside the mother-liquid, transforming into a regular isolated binuclear paddle-wheel complex 2 with four intra-binuclear bridging methanoates and two axial 2-mpy ligands. The polynuclear complex 3 is formed of alternate mononuclear and binuclear building blocks resembling the central cores of I and 2, but with significant differences, especially for the methanoates of the mononuclear units. The oxygen atom of the mononuclear unit in the octahedral axial position in 3 is simultaneously coordinated to the axial position of the binuclear paddle-wheel central core, thus enabling a chain type of structure. A chain of alternate mononuclear and binuclear building blocks, as in the neutral compound 3. are found as well in the ionic polymeric compound 4, though two types of bridges are found in 4, while there is only one type in 3. Namely, the axial position of the octahedral mononuclear unit in 4 is occupied by the methanoate oxygen atom that is already a part of the binuclear paddle-wheel unit, while one equatorial methanoate from the mononuclear unit serves as a triatomic bridge to the axial position of the binuclear building block. A very strong antiferromagnetic interaction is found for all the complexes with the paddle-wheel building blocks [Cu-2(mu-O2CH)(4)] 2-4 (-2J = 444-482 cm(-1)), attributed to the methanoate intra-binuclear bridges. On the other hand, this strong antiferromagnetism, found already at room temperature, reduces the intensity of the EPR S = 1 spin signals reported for the isolated paddle-wheel complex 2. For the polymeric 3, only the spin S = 1/2 signals are found in the EPR spectra, and they are assigned to the mononuclear building blocks. No signals with a clear origin are however seen in the room temperature EPR spectrum of the polymeric analogue 4, only the S = 1/2 signals in the low temperature spectra. This feature is suggested to be due to a specific influence between the adjacent S = 1 (binuclear) and S = 1/2 (mononuclear) species via their bridges. Y1 - 2009 UR - http://www.sciencedirect.com/science/journal/02775387 U6 - https://doi.org/10.1016/j.poly.2009.05.066 SN - 0277-5387 ER - TY - JOUR A1 - Kozlevcar, Bojan A1 - Odlazek, Darja A1 - Golobic, Amalija A1 - Pevec, Andrej A1 - Strauch, Peter A1 - Segedin, Primoz T1 - Complexes with lignin model compound vanillic acid : two different carboxylate ligands in the same dinuclear tetracarboxylate complex [Cu-2(C8H7O4)(2)(O2CCH3)(2)(CH3OH)(2)] N2 - Two copper(II) coordination compounds with vanillic acid C8H8O4 (1), namely [Cu- 2(C8H7O4)(2)(O2CCH3)(2)(CH3OH)(2)] (2) and [Cu-2(C8H7O4)(4)(H2O2)(2)] (3), were synthesized and characterized. Single crystals of 1-3 were obtained and their crystal structures determined. The structure of 2 shows dinuclear cage structure of copper acetate hydrate type, however with two different carboxylates, acetates and vanillic acid anions,. respectively. Both bridging anions are in pairs in trans orientation. Methanol molecules are apically coordinated (Cu-O7 2.160(2) angstrom), fulfilling square-pyramidal coordination sphere around both copper ions. The compound 2 decomposes outside mother-liquid (yielding [Cu-2(C8H7O4)(2)(O2CCH3)(2)(H2O)(2)] (2a)) with the removal of methanol, but without significant change of the dicopper tetracarboxylate cage structure, as noticed by mu(eff) 1.48 BM for 2a. Similar was found also in the X-band EPR spectra with three signals H-z1, H-perpendicular to 2 and H-z2 in the region from 0 to 600 mT. The structure of free vanillic acid 1 is composed of dimeric units of two molecules, connected by two parallel hydrogen bonds between carboxylate group of each other (O1-H(...)O2 2.642(3) angstrom), while the structure of 3 is of [Cu-2(O2CCH3)(4)(H2O)(2)] type. Interestingly, an additional signal in the EPR spectra of 3 is found at 80 mT (H- perpendicular to 1) at 298 and at 116 K, next to three signals H-z1, H-perpendicular to 2 and H-z2. Y1 - 2006 UR - http://www.sciencedirect.com/science/journal/02775387 U6 - https://doi.org/10.1016/j.poly.2005.08.031 SN - 0277-5387 ER -