TY - JOUR A1 - Awad, Duha Jawad A1 - Conrad, Franziska A1 - Koch, Andreas A1 - Friedrich, Alwin A1 - Poeppl, Andreas A1 - Strauch, Peter T1 - 2,2'-Bipyridin-1,2-dithiolat Gemischtligand-Komplexe : Systhese, Charakterisierung und EPR-Spektroskopie N2 - A series of new 2 2'-bipyridine/1 2-dithiolate transition metal complexes has been synthesised and characterised As 1,2-dithiolate ligands 1,2 dithiooxalate (dto) and 1 2-dithiosquarate (dtsq) were used It follows from the IR spectra that the multidentate dithiolate ligands coordinate exclusively via their sulfur atoms forming an MN2S2 coordination sphere The central metal ions (M) are Cu2+ Ni2+ Pd2+ Pt2+, and Zn2+ The complex [Cu-II(bpy)(dto)] could be studied by EPR spectroscopy and was measured as powder diamagnetically diluted in the isostructural [Ni-II(bpy)(dto)] host structure The spin density contribution calculated from the experimental parameters is compared with the electronic situation in the frontier orbitals namely in the semi occupied SOMO of the copper complex derived from quantum chemical calculations on different levels (EHT and DFT) Y1 - 2010 UR - http://www.znaturforsch.com/b.htm SN - 0932-0776 ER - TY - JOUR A1 - Awad, Duha Jawad A1 - Conrad, Franziska A1 - Koch, Andreas A1 - Schilde, Uwe A1 - Poeppl, Andreas A1 - Strauch, Peter T1 - 1,10-phenanthroline-dithiolate mixed ligand transition metal complexes : synthesis, characterization and EPR spectroscopy N2 - A series of new N2S2 mixed ligand transition metal complexes, where N-2 is phenanthroline and S-2 is 1,2- dithiooxalate (dto) or 1,2-dithiosquarate (dtsq), has been synthesized and characterized. IR spectra reveal that the 1,2- dithiolate ligands are coordinated via the sulfur atoms forming a N2S2 coordination sphere. The copper(II) complex [Cu(phen)(dto)] was studied by EPR spectroscopy as a diamagnetically diluted powder. The diamagnetic dilution resulted from doping of the copper complex into the isostructural host lattice of the nickel complex [Ni(phen)(dto)]. The electronic situation in the frontier orbitals of the copper complex calculated from the experimental data is compared to the results of EHT and DFT calculations. Furthermore, one side product, chlorobis(1,10-phenanthroline)copper(I) ethanol solvate hydrate [(phen)(2)CuCl]center dot C2H5OH center dot H2O, was formed by a reduction process and characterized by X-ray diffraction. In the crystal packing one-dimensional columns of dimers are formed, stabilized by significant pi-pi interactions. Y1 - 2010 UR - http://www.sciencedirect.com/science/journal/00201693 U6 - https://doi.org/10.1016/j.ica.2010.01.021 SN - 0020-1693 ER - TY - JOUR A1 - Farra, Ramzi A1 - Thiel, Kerstin A1 - Winter, Alette A1 - Klamroth, Tillmann A1 - Poeppl, Andreas A1 - Kelling, Alexandra A1 - Schilde, Uwe A1 - Taubert, Andreas A1 - Strauch, Peter T1 - Tetrahalidocuprates(II)-structure and EPR spectroscopy Part 1: Tetrabromidocuprates(II) JF - New journal of chemistry N2 - Tetrahalidocuprates(II) show a high degree of structural flexibility. We present the results of crystallographic and electron paramagnetic resonance (EPR) spectroscopic analyses of four new tetrabromidocuprate(II) compounds and compare the results with previously reported data. The cations in the new compounds are the sterically demanding benzyltriphenylphosphonium, methyltriphenylphosphonium, tetraphenylphosphonium, and hexadecyltrimethylammonium ions; they were used to achieve a reasonable separation of the paramagnetic Cu(II) ions for EPR spectroscopy. X-Ray crystallography shows that in all four complexes the [CuBr4](2-) units have a distorted tetrahedral coordination geometry which is in agreement with DFT calculations. The EPR hyperfine structure was not resolved. This is due to the exchange broadening resulting from still incomplete separation of the paramagnetic Cu(II) centres. Nevertheless, the principal values of the electron Zeemann tensor (g(parallel to) and g(perpendicular to)) of the complexes could be determined. A correlation of structural (X-ray) parameters with the spin density at the copper centres (DFT) is well reflected in the EPR spectra of the bromidocuprates. This enables the correlation of X-ray and EPR parameters to predict the structure of tetrabromidocuprates in physical states other than the crystalline state. As a result, we provide a method to structurally characterize [CuBr4](2-) in, for example, ionic liquids or in solution, which has important implications for e.g. catalysis or materials science. Y1 - 2011 U6 - https://doi.org/10.1039/c1nj20271e SN - 1144-0546 VL - 35 IS - 12 SP - 2793 EP - 2803 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Winter, Alette A1 - Thiel, Kerstin A1 - Zabel, Andre A1 - Klamroth, Tillmann A1 - Poeppl, Andreas A1 - Kelling, Alexandra A1 - Schilde, Uwe A1 - Taubert, Andreas A1 - Strauch, Peter T1 - Tetrahalidocuprates(II) - structure and EPR spectroscopy. Part 2: tetrachloridocuprates(II) JF - New journal of chemistry N2 - We present and discuss the results of crystallographic and electron paramagnetic resonance (EPR) spectroscopic analyses of five tetrachloridocuprate(II) complexes to supply a useful tool for the structural characterisation of the [CuCl4](2-) moiety in the liquid state, for example in ionic liquids, or in solution. Bis(benzyltriethylammonium)-, bis(trimethylphenylammonium)-, bis(ethyltriphenylphosphonium)-, bis(benzyltriphenylphosphonium)-, and bis(tetraphenylarsonium) tetrachloridocuprate(II) were synthesised and characterised by elemental, IR, EPR and X-ray analyses. The results of the crystallographic analyses show distorted tetrahedral coordination geometry of all [CuCl4](2-) anions in the five complexes and prove that all investigated complexes are stabilised by hydrogen bonds of different intensities. Despite the use of sterically demanding ammonium, phosphonium and arsonium cations to obtain the separation of the paramagnetic Cu(II) centres for EPR spectroscopy no hyperfine structure was observed in the EPR spectra but the principal values of the electron Zeeman tensor, g(parallel to) and g(perpendicular to), could be determined. With these EPR data and the crystallographic parameters we were able to carry out a correlation study to anticipate the structural situation of tetrachloridocuprates in different physical states. This correlation is in good agreement with DFT calculations. Y1 - 2014 U6 - https://doi.org/10.1039/c3nj01039b SN - 1144-0546 SN - 1369-9261 VL - 38 IS - 3 SP - 1019 EP - 1030 PB - Royal Society of Chemistry CY - Cambridge ER -