TY - THES A1 - Rossmanith, Eva T1 - Breeding biology, mating system and population dynamics of the Lesser Spotted Woodepcker (Picoides minor) : combining empirical and model investigations T1 - Zu Brutbiologie, Paarungssystem und Populationsdynamik des Kleinspechts (Picoides minor) : Verknüpfung von empirischen Untersuchungen mit ökologischer Modellierung N2 - The protection of species is one major focus in conservation biology. The basis for any management concept is the knowledge of the species autecology. In my thesis, I studied the life-history traits and population dynamics of the endangered Lesser Spotted Woodpecker (Picoides minor) in Central Europe. Here, I combine a range of approaches, from empirical investigations of a Lesser Spotted Woodpecker population in the Taunus low mountain range in Germany, the analysis of empirical data and the development of an individual-based stochastic model simulating the population dynamics. In the field studies I collected basic demographic data of reproductive success and mortality. Moreover, breeding biology and behaviour were investigated in detail. My results showed a significant decrease of the reproductive success with later timing of breeding, caused by deterioration in food supply. Moreover, mate fidelity was of benefit, since pairs composed of individuals that bred together the previous year started earlier with egg laying and obtained a higher reproductive success. Both sexes were involved in parental care, but the care was only shared equally during incubation and the early nestling stage. In the late nestling stage, parental care strategies differed between sexes: Females considerably decreased feeding rate with number of nestlings and even completely deserted small broods. Males fed their nestlings irrespective of brood size and compensated for the females absence. The organisation of parental care in the Lesser Spotted Woodpecker is discussed to provide the possibility for females to mate with two males with separate nests and indeed, polyandry was confirmed. To investigate the influence of the observed flexibility in the social mating system on the population persistence, a stochastic individual-based model simulating the population dynamics of the Lesser Spotted Woodpecker was developed, based on empirical results. However, pre-breeding survival rates could not be obtained empirically and I present in this thesis a pattern-oriented modelling approach to estimate pre-breeding survival rates by comparing simulation results with empirical pattern of population structure and reproductive success on population level. Here, I estimated the pre-breeding survival for two Lesser Spotted Woodpecker populations on different latitudes to test the reliability of the results. Finally, I used the same simulation model to investigate the effect of flexibility in the mating system on the persistence of the population. With increasing rate of polyandry in the population, the persistence increased and even low rates of polyandry had a strong influence. Even when presuming only a low polyandry rate and costs of polyandry in terms of higher mortality and lower reproductive success for the secondary male, the positive effect of polyandry on the persistence of the population was still strong. This thesis greatly helped to increase the knowledge of the autecology of an endangered woodpecker species. Beyond the relevance for the species, I could demonstrate here that in general flexibility in mating systems are buffer mechanisms and reduce the impact of environmental and demographic noise. N2 - Der Schutz von Arten ist eine der Hauptaufgaben des Naturschutzes. Für die Erstellung von Schutzkonzepten sind Informationen zur Autökologie der Zielart notwendige Voraussetzung. Der Kleinspecht (Picoides minor) ist in vielen Teilen seines Verbreitungsgebietes bestandsbedroht, das Wissen zur Biologie und Verhalten der Art ist jedoch lückenhaft. Ziel meiner Arbeit war es daher, demographische Parameter der Populationsdynamik des Kleinspechts zu erfassen, die als Grundlage für Populationsgefährdungsanalysen benötigt werden. Da Untersuchungen in Schweden eine gewisse Flexibilität im Paarungssystem des Kleinspechts zeigten, sollte darüber hinaus das Paarungssystem und sein Einfluss auf die Persistenz der Population untersucht werden. Die Arbeit umfasste eine Reihe von methodischen Ansätzen, von empirischen Untersuchungen an einer Kleinspechtpopulation im hessischen Vordertaunus über die Aufbereitung von empirischen Daten bis hin zur Entwicklung und Auswertung eines stochastischen individuenbasierten Modells zur Simulation der Populationsdynamik. Die Ergebnisse der empirischen Untersuchung zeigten eine Abnahme des Reproduktionserfolgs mit fortschreitendem Legebeginn. Die Zusammensetzung der Nestlingsnahrung ließ vermuten, dass dies durch eine Verschlechterung der Nahrungsversorgung begründet war. Paartreue war bei der Reproduktion von Vorteil, da Individuen, die schon im vorherigen Jahr zusammen gebrütet hatten, einen früheren Legebeginn und damit einen höheren Fortpflanzungserfolg aufwiesen als neu formierte Paare. Beide Geschlechter investierten in die Brutpflege, jedoch war die Aufteilung nur während der Bebrütung der Eier und in der ersten Hälfte der Nestlingsperiode gleichmäßig. In der späten Nestlingsperiode konnten geschlechtsspezifische Strategien im elterlichen Investment identifiziert werden: die Weibchen verringerten die Versorgungsrate in Abhängigkeit des Wertes der Brut - gemessen in der Zahl der Nestlinge - und gaben die Versorgung kleiner Bruten ganz auf. Die Männchen dagegen kompensierten dieses Verhalten, so dass auch von den Weibchen verlassene Bruten erfolgreich waren. Interessanterweise konnte mehrmals die Verpaarung von einem Weibchen mit zwei Männchen beobachtet werden. Das Auftreten dieses polyandrischen Paarungssystems wird in der Arbeit als Resultat der Aufteilung der Brutpflege diskutiert. Die bestätigte Flexibilität im Paarungssystem könnte Einfluss auf die Persistenz der Population haben. Die Persistenz von Populationen kann jedoch nicht empirisch gemessen werden. Daher entwickelte ich ein individuen-basiertes stochastisches Modell zur Simulation der Populationsdynamik des Kleinspechts, dass auf den empirischen Daten basiert. Allerdings fehlten Überlebensraten der ausgeflogenen Jungvögel, die im Feld nicht ermittelt werden kann. Daher testete ich hier eine Methode, die durch den Vergleich von Simulationsergebnissen mit eigenen empirischen Daten zur Populationsstruktur und zum Reproduktionserfolg auf der Ebene der Gesamtpopulation die Überlebensrate der Jungvögel abschätzt. Die Überlebensraten wurde zusätzlich für eine Population des Kleinspechtes ermittelt, deren Datengrundlage aus Freilandstudien in Schweden stammten. Durch den Vergleich der Raten für die beiden Populationen konnte die Aussagefähigkeit des Modells und die Güte der Abschätzungen untersucht werden. Im letzten Teil meiner Arbeit nutzte ich das Modell schließlich, um die Auswirkungen des Paarungssystems auf die Überlebensfähigkeit der Population zu untersuchen. Im Modell konnte ein Weibchen polyandrisch sein, wenn es gute Brutbedingungen hatte und das Geschlechterverhältnis zum Männchen hin verschoben war. Zusätzlich variierte ich die Wahrscheinlichkeit, dass unter diesen Umständen Polyandrie auftritt. Im Model wurden 3 Szenarien getestet: (i) strenge Monogamie, (ii) gelegentliche Polyandrie und (iii) gelegentliche Polyandrie unter der Annahme von Kosten für das sekundäre Männchen in Form von höherer Mortalität und geringerem Reproduktionserfolg. Es zeigte sich, dass selbst sehr geringe Polyandrieraten und die Annahme von Kosten noch einen deutlichen positiven Einfluss auf die Persistenz der Population ausüben. Die Flexibilität im Paarungssystem dient damit als Puffermechanismus gegen demographisches Rauschen und Umweltrauschen. Diese Arbeit trät dazu bei, die Autökologie des Kleinspechts besser zu verstehen und ist damit wichtige Grundlage für Schutzkonzepte in Mitteleuropa. Über die artspezifische Bedeutung hinaus, leistet die Arbeit einen Beitrag zur Untersuchung von Methoden zur Abschätzung fehlender demographischer Parameter sowie zur Identifizierung von Puffermechanismen. Eine wichtige Schlussfolgerung meiner Arbeit ist es, dass die Flexibilität artspezifischen Verhaltens in zukünftigen Populationsgefährdungsanalysen integriert werden sollte, um die Qualität von Prognosen zur Persistenz von Populationen zu verbessern. KW - Modellierung KW - Öko-Ethologie KW - Paarungssystem KW - Polyandrie KW - Mortalität KW - Reproduktionserfolg KW - pattern-oriented modelling KW - polyandry KW - survival rate KW - reproduction success Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-5328 ER - TY - JOUR A1 - Blaum, Niels A1 - Tietjen, Britta A1 - Rossmanith, Eva T1 - The impact of livestock husbandry on small- and medium-sized carnivores in Kalahari savannah rangelands N2 - We analyzed relative sensitivities of small- and medium-sized carnivores to livestock husbandry (stocking rates and predator control) in Kalahari, South Africa, rangelands at a regional scale. We monitored small carnivores using track counts on 22 Kalahari farms across a land-use gradient ranging from low to high stocking rates and also interviewed each farm manager to identify farmers" perception of small carnivores as potential predators for livestock. We recorded 12 species of small- and medium-sized carnivores across 22 Kalahari farms. Stocking rate was the most important driving variable for local carnivore abundance. Abundance of all species was lowest on farms where stocking rate was high. Most farm managers perceived medium-sized carnivores, in particular, African wildcat (Felis silvestris lybica), black-backed jackal (Canis mesomelas), and caracal (Caracal caracal), as potential predators of livestock. Multiple regression analysis shows that black-backed jackal, African wildcat, and caracal were negatively affected by predator control measures, whereas bat-eared fox (Otocyon megalotis), cape fox (Vulpes chama), and small-spotted genet (Genetta genetta) were positively affected. Our results show a need for expanding research and conservation activities toward small- and medium-sized carnivores in southern African savannah rangelands. We, therefore, suggest developing a monitoring program combining passive tracking with indigenous knowledge of local Khoisan Bushmen to monitor carnivore populations, and we recommend additional predator removal experiments that manipulate predator densities. Y1 - 2009 UR - http://www.wildlifejournals.org/perlserv/?request=index-html&ct=1 U6 - https://doi.org/10.2193/2008-034 SN - 0022-541X ER - TY - JOUR A1 - Blaum, Niels A1 - Engeman, Richard M. A1 - Wasiolka, Bernd A1 - Rossmanith, Eva T1 - Indexing small mammalian carnivores in the southern Kalahari, South Africa N2 - Monitoring animal populations in changing environments is crucial to wildlife conservation and management, but restrictions in resources are a recurring problem for wildlife managers and researchers throughout Africa. Land-use- induced shrub encroachment in Kalahari savannah rangelands has led to fragmentation of the landscape. Mammalian carnivores are particularly vulnerable to local extinction in fragmented landscapes, but their low numbers and their often nocturnal and secretive habits make them difficult to monitor. In this study, we tested the applicability of a passive tracking method and compared two measurement methods and index calculations for monitoring small carnivores across a grazing gradient in the southern Kalahari. During the four years of monitoring in a five-year period, we used the knowledge of indigenous Khoisan Bushmen for the identification of carnivore tracks on 640 sand transects (5 m x 250 m). Our results showed that this simple and inexpensive observation method enabled detailed monitoring of 10 small carnivore species across the grazing gradient. A binary index calculated an index based on presence/absence of a species' tracks on each transect, whereas the track intrusion index used the number of track intrusions to each transect for each species in its calculations. For less common species, the two indices were similar in trend and magnitude, because the number of intrusions to each transect was typically 1 or 0. Usually, the two indices showed relatively strong correlations. However, species with patchy distributions of higher numbers presented difficulties for the binary index to monitor trends, but not for the track intrusion index. Y1 - 2008 SN - 1035-3712 ER - TY - JOUR A1 - Rossmanith, Eva A1 - Blaum, Niels A1 - Höntsch, Kerstin A1 - Jeltsch, Florian T1 - Sex-related parental care strategies in the lesser spotted woodpecker "Picoides minor" : of flexible mothers and dependable fathers N2 - We investigated sex-specific parental care behaviour of lesser spotted woodpeckers Picoides minor in the low mountain range Taunus, Germany. Observed parental care included incubation, nest sanitation as well as brooding and feeding of nestlings. Contributions of the two sexes to parental care changed in progress of the breeding period. During incubation and the first half of the nestling period, parental care was divided equally between partners. However, in the late nestling stage, we found males to feed their nestlings irrespective of brood size while females considerably decreased feeding rate with the number of nestlings. This behaviour culminated in desertion of small broods by females shortly before fledging. The fact that even deserted nests were successful indicates that males were able to compensate for the females' absence. Interestingly, the mating of one female with two males with separate nests could be found in the population, which confirms earlier findings of polyandry in the lesser spotted woodpecker. We conclude that biparental care is not essential in the later stage and one partner can reduce effort and thus costs of parental care, at least in small broods where the mate is able to compensate for that behaviour. Reduced care and desertion appears only in females, which might be caused by a combination of two traits: First, females might suffer higher costs of investment in terms of mortality and secondly, male-biased sex ratio in the population generally leads to higher mating probabilities for females in the following breeding season. The occurrence of polyandry seems to be a result of these conditions. Y1 - 2009 UR - http://www3.interscience.wiley.com/journal/118513172/home U6 - https://doi.org/10.1111/j.1600-048X.2008.04353.x SN - 0908-8857 ER - TY - JOUR A1 - Meyer, Jork A1 - Kohnen, Annette A1 - Durka, Walter A1 - Wöstemeyer, Johannes A1 - Blaum, Niels A1 - Rossmanith, Eva A1 - Brandl, Roland T1 - Genetic structure and dispersal in a small South African Rodent : is dispersal female-biased? N2 - Dispersal greatly determines genetic structure of populations, although it is influenced by landscape heterogeneity, quality of the matrix, resource distribution and local population densities and dynamics. To get insights into some of those processes we analysed the genetic structure of the hairy-footed gerbil Gerbillurus paeba (Rodentia, Murinae, Gerbillinae) in the southern Kalahari (South Africa). Samples were taken from 20 populations covering an area of about 2200 km2. Genetic data were related to landscape characters and population dynamics. We used newly developed microsatellites and found at all loci some indication for the presence of null alleles. However, null alleles seem to have little influence on the general results of our analyses. Altogether we found even nearby populations of G. paeba to be significantly differentiated, although assignment tests revealed 24% of individuals as immigrants. Genetic structure was independent of landscape heterogeneities at all spatial scales. Autocorrelation analyses (range 50-90 km) revealed significant genetic structure within populations on distances <3 km. We found some indication for female-biased dispersal. Our study suggests that dispersing individuals have little influence on the long-term genetic structure and that drift is the major cause of genetic diversity. The observed genetic pattern likely derives from strong population fluctuations of G. paeba. The landscape structure has little influence on the genetic differentiation between populations. Y1 - 2009 UR - http://www.sciencedirect.com/science/journal/16165047 U6 - https://doi.org/10.1016/j.mambio.2008.11.004 SN - 1616-5047 ER - TY - JOUR A1 - Blaum, Niels A1 - Seymour, Colleen A1 - Rossmanith, Eva A1 - Schwager, Monika A1 - Jeltsch, Florian T1 - Changes in arthropod diversity along a land use driven gradient of shrub cover in savanna rangelands : identifcation of suitable indicators N2 - Shrub encroachment linked to heavy grazing has dramatically changed savanna landscapes, and is a major form of rangeland degradation. Our understanding of how shrub encroachment affects arthropod communities is poor, however. Here, we investigate the effects of shrub encroachment on abundance and diversity of ground-dwelling (wingless) arthropods at varying levels of shrub cover in the southern Kalahari. We also ascertain if invertebrate assemblage composition changes with habitat structure and identify which aspects of habitat structure (e.g., grass cover, herbaceous plant cover, shrub density) correlate most strongly with these changes. Ant, scorpion and dung beetle abundance increased with shrub cover, whereas grasshoppers and solifuges declined. Spider and beetle abundance exhibited hump-shaped relationships with shrub cover. RTU richness within orders either mirrored abundances, or exhibited no trend. Shrub density was the habitat component most correlated with similarities between invertebrate assemblages. Ground-dwelling arthropods showed clear shifts in species assemblage composition at a similarity level of 65% according to shrub density. Changes in indicator species showed that within the Tenebrionidae (darkling beetles), certain species respond positively to shrub thickening, replacing other species within the Family. Small-bodied, wingless Scarabaeidae (dung beetles) tended to increase with increased shrub density and three species emerged as significant indicators of more thickened habitats, although this might be a response to greater dung availability, rather than habitat structure itself. We conclude that because ground- dwelling invertebrates showed such clear responses in species assemblage composition, they present excellent candidates for use as indicator species in further studies into bush encroachment. Y1 - 2009 UR - http://www.springerlink.com/content/100125 U6 - https://doi.org/10.1007/s10531-008-9498-x SN - 0960-3115 ER - TY - JOUR A1 - Blaum, Niels A1 - Schwager, Monika A1 - Wichmann, Matthias C. A1 - Rossmanith, Eva T1 - Climate induced changes in matrix suitability explain gene flow in a fragmented landscape - the effect of interannual rainfall variability JF - Ecography : pattern and diversity in ecology ; research papers forum N2 - In fragmented landscapes, the survival of species and the maintenance of populations with healthy genetic structures will largely depend on movement/dispersal of organisms across matrix areas. In this article, we highlight that effects of fragmentation and climate change occur simultaneously and may enhance or mitigate each other. We systematically analyzed the effect of increasing interannual variation in rainfall on the genetic structure of two neighbouring small mammal subpopulations in a fragmented savanna landscape. The effect of interannual rainfall variation is analyzed for two contrasting scenarios that differ in mean annual rainfall and are both close to a dispersal threshold. Scenario 1 (low mean annual rainfall) lies slightly below this threshold and scenario 2 (high mean annual rainfall) slightly above, i.e. the amount of rainfall in an average rainfall year prevents dispersal in scenario 1, but promotes gene flow in scenario 2. We show that the temporal dynamics of the matrix was crucial for gene flow and the genetic structure of the neighbouring small mammal subpopulations. The most important result is that the increase in rainfall variability could both increase and decrease the genetic difference between the subpopulations in a complex pattern, depending on the scenario and on the amount of variation in rainfall. Finally, we discuss that the relevance of the matrix as temporarily suitable habitat may become a key aspect for biodiversity conservation. We conclude to incorporate temporal changes in matrix suitability in metapopulation theory since local extinctions, gene flow and re-colonization are likely to be affected in fragmented landscapes with such dynamic matrix areas. Y1 - 2012 U6 - https://doi.org/10.1111/j.1600-0587.2011.07154.x SN - 0906-7590 VL - 35 IS - 7 SP - 650 EP - 660 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Rossmanith, Eva A1 - Grimm, Volker A1 - Blaum, Niels A1 - Jeltsch, Florian T1 - Behavioural flexibility in the mating system buffers population extinction: lessons from the Lesser Spotted Woodpecker (Picoides minor) N2 - In most stochastic models addressing the persistence of small populations, environmental noise is included by imposing a synchronized effect of the environment on all individuals. However, buffer mechanisms are likely to exist that may counteract this synchronization to some degree. We have studied whether the flexibility in the mating system, which has been observed in some bird species, is a potential mechanism counteracting the synchronization of environmental fluctuations. Our study organism is the lesser spotted woodpecker Picoides minor (Linnaeus), a generally monogamous species. However, facultative polyandry, where one female mates with two males with separate nests, was observed in years with male-biased sex ratio. We constructed an individual-based model from data and observations of a population in Taunus, Germany. We tested the impact of three behavioural scenarios on population persistence: (1) strict monogamy; (2) polyandry without costs; and (3) polyandry assuming costs in terms of lower survival and reproductive success for secondary males. We assumed that polyandry occurs only in years with male-biased sex ratio and only for females with favourable breeding conditions. Even low rates of polyandry had a strong positive effect on population persistence. The increase of persistence with carrying capacity was slower in the monogamous scenario, indicating strong environmental noise. In the polyandrous scenarios, the increase of persistence was stronger, indicating a buffer mechanism. In the polyandrous scenarios, populations had a higher mean population size, a lower variation in number of individuals, and recovered faster after a population breakdown. Presuming a realistic polyandry rate and costs for polyandry, there was still a strong effect of polyandry on persistence. The results show that polyandry and in general flexibility in mating systems is a buffer mechanism that can significantly reduce the impact of environmental and demographic noise in small populations. Consequently, we suggest that even behaviour that seems to be exceptional should be considered explicitly when predicting the persistence of populations Y1 - 2006 U6 - https://doi.org/10.1111/j.1365-2656.2006.01074.x ER - TY - JOUR A1 - Zurell, Damaris A1 - Grimm, Volker A1 - Rossmanith, Eva A1 - Zbinden, Niklaus A1 - Zimmermann, Niklaus E. A1 - Schröder-Esselbach, Boris T1 - Uncertainty in predictions of range dynamics black grouse climbing the Swiss Alps JF - Ecography : pattern and diversity in ecology ; research papers forum N2 - Empirical species distribution models (SDMs) constitute often the tool of choice for the assessment of rapid climate change effects on species vulnerability. Conclusions regarding extinction risks might be misleading, however, because SDMs do not explicitly incorporate dispersal or other demographic processes. Here, we supplement SDMs with a dynamic population model 1) to predict climate-induced range dynamics for black grouse in Switzerland, 2) to compare direct and indirect measures of extinction risks, and 3) to quantify uncertainty in predictions as well as the sources of that uncertainty. To this end, we linked models of habitat suitability to a spatially explicit, individual-based model. In an extensive sensitivity analysis, we quantified uncertainty in various model outputs introduced by different SDM algorithms, by different climate scenarios and by demographic model parameters. Potentially suitable habitats were predicted to shift uphill and eastwards. By the end of the 21st century, abrupt habitat losses were predicted in the western Prealps for some climate scenarios. In contrast, population size and occupied area were primarily controlled by currently negative population growth and gradually declined from the beginning of the century across all climate scenarios and SDM algorithms. However, predictions of population dynamic features were highly variable across simulations. Results indicate that inferring extinction probabilities simply from the quantity of suitable habitat may underestimate extinction risks because this may ignore important interactions between life history traits and available habitat. Also, in dynamic range predictions uncertainty in SDM algorithms and climate scenarios can become secondary to uncertainty in dynamic model components. Our study emphasises the need for principal evaluation tools like sensitivity analysis in order to assess uncertainty and robustness in dynamic range predictions. A more direct benefit of such robustness analysis is an improved mechanistic understanding of dynamic species responses to climate change. Y1 - 2012 U6 - https://doi.org/10.1111/j.1600-0587.2011.07200.x SN - 0906-7590 VL - 35 IS - 7 SP - 590 EP - 603 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Grimm, Volker A1 - Berger, Uta A1 - Bastiansen, Finn A1 - Eliassen, Sigrunn A1 - Ginot, Vincent A1 - Giske, Jarl A1 - Goss-Custard, John A1 - Grand, Tamara A1 - Heinz, Simone K. A1 - Huse, Geir A1 - Huth, Andreas A1 - Jepsen, Jane U. A1 - Jorgensen, Christian A1 - Mooij, Wolf M. A1 - Mueller, Birgit A1 - Piou, Cyril A1 - Railsback, Steven Floyd A1 - Robbins, Andrew M. A1 - Robbins, Martha M. A1 - Rossmanith, Eva A1 - Rueger, Nadja A1 - Strand, Espen A1 - Souissi, Sami A1 - Stillman, Richard A. A1 - Vabo, Rune A1 - Visser, Ute A1 - DeAngelis, Donald L. T1 - A standard protocol for describing individual-based and agent-based models JF - Ecological modelling : international journal on ecological modelling and engineering and systems ecolog N2 - Simulation models that describe autonomous individual organisms (individual based models, IBM) or agents (agent-based models, ABM) have become a widely used tool, not only in ecology, but also in many other disciplines dealing with complex systems made up of autonomous entities. However, there is no standard protocol for describing such simulation models, which can make them difficult to understand and to duplicate. This paper presents a proposed standard protocol, ODD, for describing IBMs and ABMs, developed and tested by 28 modellers who cover a wide range of fields within ecology. This protocol consists of three blocks (Overview, Design concepts, and Details), which are subdivided into seven elements: Purpose, State variables and scales, Process overview and scheduling, Design concepts, Initialization, Input, and Submodels. We explain which aspects of a model should be described in each element, and we present an example to illustrate the protocol in use. In addition, 19 examples are available in an Online Appendix. We consider ODD as a first step for establishing a more detailed common format of the description of IBMs and ABMs. Once initiated, the protocol will hopefully evolve as it becomes used by a sufficiently large proportion of modellers. (c) 2006 Elsevier B.V. All rights reserved. KW - individual-based model KW - agent-based model KW - model description KW - scientific communication KW - standardization Y1 - 2006 U6 - https://doi.org/10.1016/j.ecolmodel.2006.04.023 SN - 0304-3800 VL - 198 SP - 115 EP - 126 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Popp, Alexander A1 - Blaum, Niels A1 - Domptail, Stephanie A1 - Herpel, Nicole A1 - Gröngröft, Alexander A1 - Hoffman, T. T. A1 - Jürgens, Norbert A1 - Milton, Sue A1 - Nuppenau, Ernst-August A1 - Rossmanith, Eva A1 - Schmidt, Michael A1 - Vogel, Melanie A1 - Vohland, Katrin A1 - Jeltsch, Florian T1 - From satellite imagery to soil-plant interactions BT - integrating disciplines and scales in process based simulation models N2 - Decisions for the conservation of biodiversity and sustainable management of natural resources are typically related to large scales, i.e. the landscape level. However, understanding and predicting the effects of land use and climate change on scales relevant for decision-making requires to include both, large scale vegetation dynamics and small scale processes, such as soil-plant interactions. Integrating the results of multiple BIOTA subprojects enabled us to include necessary data of soil science, botany, socio-economics and remote sensing into a high resolution, process-based and spatially-explicit model. Using an example from a sustainably-used research farm and a communally used and degraded farming area in semiarid southern Namibia we show the power of simulation models as a tool to integrate processes across disciplines and scales. Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-7302 N1 - Interdisziplinäres Zentrum für Musterdynamik und Angewandte Fernerkundung Workshop vom 9. - 10. Februar 2006. [Poster] ER - TY - CHAP A1 - Rossmanith, Eva A1 - Blaum, Niels A1 - Keil, Manfred A1 - Langerwisch, F. A1 - Meyer, Jork A1 - Popp, Alexander A1 - Schmidt, Michael A1 - Schultz, Christoph A1 - Schwager, Monika A1 - Vogel, Melanie A1 - Wasiolka, Bernd A1 - Jeltsch, Florian T1 - Scaling up local population dynamics to regional scales BT - an integrated approach N2 - In semi-arid savannas, unsustainable land use can lead to degradation of entire landscapes, e.g. in the form of shrub encroachment. This leads to habitat loss and is assumed to reduce species diversity. In BIOTA phase 1, we investigated the effects of land use on population dynamics on farm scale. In phase 2 we scale up to consider the whole regional landscape consisting of a diverse mosaic of farms with different historic and present land use intensities. This mosaic creates a heterogeneous, dynamic pattern of structural diversity at a large spatial scale. Understanding how the region-wide dynamic land use pattern affects the abundance of animal and plant species requires the integration of processes on large as well as on small spatial scales. In our multidisciplinary approach, we integrate information from remote sensing, genetic and ecological field studies as well as small scale process models in a dynamic region-wide simulation tool.
Interdisziplinäres Zentrum für Musterdynamik und Angewandte Fernerkundung Workshop vom 9. - 10. Februar 2006. Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-7320 N1 - [Poster] ER -