TY - JOUR A1 - Brendler, Christian A1 - Riebe, Daniel A1 - Ritschel, Thomas A1 - Beitz, Toralf A1 - Löhmannsröben, Hans-Gerd T1 - Investigation of neuroleptics and other aromatic compounds by laser-based ion mobility mass spectrometry JF - Analytical & bioanalytical chemistry N2 - Laser-based ion mobility (IM) spectrometry was used for the detection of neuroleptics and PAH. A gas chromatograph was connected to the IM spectrometer in order to investigate compounds with low vapour pressure. The substances were ionized by resonant two-photon ionization at the wavelengths lambda = 213 and 266 nm and pulse energies between 50 and 300 mu J. Ion mobilities, linear ranges, limits of detection and response factors are reported. Limits of detection for the substances are in the range of 1-50 fmol. Additionally, the mechanism of laser ionization at atmospheric pressure was investigated. First, the primary product ions were determined by a laser-based time-of-flight mass spectrometer with effusive sample introduction. Then, a combination of a laser-based IM spectrometer and an ion trap mass spectrometer was developed and characterized to elucidate secondary ion-molecule reactions that can occur at atmospheric pressure. Some substances, namely naphthalene, anthracene, promazine and thioridazine, could be detected as primary ions (radical cations), while other substances, in particular acridine, phenothiazine and chlorprothixene, are detected as secondary ions (protonated molecules). The results are interpreted on the basis of quantum chemical calculations, and an ionization mechanism is proposed. KW - Ion mobility spectrometry KW - Mass spectrometry KW - Gas chromatography KW - Laser ionization KW - REMPI KW - Neuroleptics Y1 - 2013 U6 - https://doi.org/10.1007/s00216-012-6654-7 SN - 1618-2642 VL - 405 IS - 22 SP - 7019 EP - 7029 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Riebe, Daniel A1 - Laudien, Robert A1 - Brendler, Christian A1 - Beitz, Toralf A1 - Löhmannsröben, Hans-Gerd T1 - Laser ionization of H2S and ion-molecule reactions of H3S+ in laser-based ion mobility spectrometry and drift cell time-of-flight mass spectrometry JF - Analytical & bioanalytical chemistry N2 - The detection of hydrogen sulfide (H2S) by 2 + 1 resonance-enhanced multi-photon ionization (REMPI) and the application of H2S as a laser dopant for the detection of polar compounds in laser ion mobility (IM) spectrometry at atmospheric pressure were investigated. Underlying ionization mechanisms were elucidated by additional studies employing a drift cell interfaced to a time-of-flight mass spectrometer. Depending on the pressure, the primary ions H2S+, HS+, S+, and secondary ions, such as H3S+, were observed. The 2 + 1 REMPI spectrum of H2S near lambda = 302.5 nm was recorded at atmospheric pressure. Furthermore, the limit of detection and the linear range were established. In the second part of the work, H2S was investigated as an H2O analogous laser dopant for the ionization of polar substances by proton transfer. H2S exhibits a proton affinity (PA) similar to that of H2O, but a significantly lower ionization energy facilitating laser ionization. Ion-molecule reactions (IMR) of H3S+ with a variety of polar substances with PA between 754.6 and 841.6 kJ/mol were investigated. Representatives of different compound classes, including alcohols, ketones, esters, and nitroaromatics were analyzed. The IM spectra resulting from IMR of H3S+ and H3O+ with these substances are similar in structure, i.e., protonated monomer and dimer ion peaks are found depending on the analyte concentration. KW - Ion mobility spectrometry KW - Mass spectrometry KW - REMPI KW - Hydrogen sulfide KW - Proton transfer reaction Y1 - 2013 U6 - https://doi.org/10.1007/s00216-013-7186-5 SN - 1618-2642 VL - 405 IS - 22 SP - 7031 EP - 7039 PB - Springer CY - Heidelberg ER -