TY - JOUR A1 - Zühlke, Martin A1 - Riebe, Daniel A1 - Beitz, Toralf A1 - Löhmannsröben, Hans-Gerd A1 - Andreotti, Sandro A1 - Reinert, Knut A1 - Zenichowski, Karl A1 - Diener, Marc T1 - High-performance liquid chromatography with electrospray ionization ion mobility spectrometry: Characterization, data management, and applications JF - Journal of separation science N2 - The combination of high-performance liquid chromatography and electrospray ionization ion mobility spectrometry facilitates the two-dimensional separation of complex mixtures in the retention and drift time plane. The ion mobility spectrometer presented here was optimized for flow rates customarily used in high-performance liquid chromatography between 100 and 1500 mu L/min. The characterization of the system with respect to such parameters as the peak capacity of each time dimension and of the 2D spectrum was carried out based on a separation of a pesticide mixture containing 24 substances. While the total ion current chromatogram is coarsely resolved, exhibiting coelutions for a number of compounds, all substances can be separately detected in the 2D plane due to the orthogonality of the separations in retention and drift dimensions. Another major advantage of the ion mobility detector is the identification of substances based on their characteristic mobilities. Electrospray ionization allows the detection of substances lacking a chromophore. As an example, the separation of a mixture of 18 amino acids is presented. A software built upon the free mass spectrometry package OpenMS was developed for processing the extensive 2D data. The different processing steps are implemented as separate modules which can be arranged in a graphic workflow facilitating automated processing of data. KW - Amino acids KW - Electrospray ionization KW - Ion mobility spectrometry KW - Pesticides KW - Two-dimensional separations Y1 - 2016 U6 - https://doi.org/10.1002/jssc.201600749 SN - 1615-9306 SN - 1615-9314 VL - 39 SP - 4756 EP - 4764 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Villatoro, José Andrés A1 - Zühlke, Martin A1 - Riebe, Daniel A1 - Riedel, Jens A1 - Beitz, Toralf A1 - Löhmannsröben, Hans-Gerd T1 - IR-MALDI ion mobility spectrometry JF - Analytical and bioanalytical chemistry : a merger of Fresenius' journal of analytical chemistry and Analusis N2 - The novel combination of infrared matrix-assisted laser dispersion and ionization (IR-MALDI) with ion mobility (IM) spectrometry makes it possible to investigate biomolecules in their natural environment, liquid water. As an alternative to an ESI source, the IR-MALDI source was implemented in an in-house-developed ion mobility (IM) spectrometer. The release of ions directly from an aqueous solution is based on a phase explosion, induced by the absorption of an IR laser pulse (lambda = 2.94 mu m, 6 ns pulse width), which disperses the liquid as nano- and micro-droplets. The prerequisites for the application of IR-MALDI-IM spectrometry as an analytical method are narrow analyte ion signal peaks for a high spectrometer resolution. This can only be achieved by improving the desolvation of ions. One way to full desolvation is to give the cluster ions sufficient time to desolvate. Two methods for achieving this are studied: the implementation of an additional drift tube, as in ESI-IM-spectrometry, and the delayed extraction of the ions. As a result of this optimization procedure, limits of detection between 5 nM and 2.5 mu M as well as linear dynamic ranges of 2-3 orders of magnitude were obtained for a number of substances. The ability of this method to analyze simple mixtures is illustrated by the separation of two different surfactant mixtures. KW - Ion mobility spectrometry KW - IR-MALDI KW - Laser Y1 - 2016 U6 - https://doi.org/10.1007/s00216-016-9739-x SN - 1618-2642 SN - 1618-2650 VL - 408 SP - 6259 EP - 6268 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Villatoro, José Andrés A1 - Zühlke, Martin A1 - Riebe, Daniel A1 - Beitz, Toralf A1 - Weber, Marcus A1 - Riedel, Jens A1 - Löhmannsröben, Hans-Gerd T1 - IR-MALDI ion mobility spectrometry: physical source characterization and application as HPLC detector JF - International journal for ion mobility spectrometry : official publication of the International Society for Ion Mobility Spectrometry N2 - Infrared matrix-assisted laser dispersion and ionization (IR-MALDI) in combination with ion mobility (IM) spectrometry enables the direct analysis of biomolecules in aqueous solution. The release of ions directly from an aqueous solution is based on a phase explosion, induced by the absorption of an IR laser pulse, which disperses the liquid as vapor, nano-and micro-droplets. The ionization process is characterized initially by a broad spatial distribution of the ions, which is a result of complex fluid dynamics and desolvation kinetics. These processes have a profound effect on the shape and width of the peaks in the IM spectra. In this work, the transport of ions by the phase explosion-induced shockwave could be studied independently from the transport by the electric field. The shockwave-induced mean velocities of the ions at different time scales were determined through IM spectrometry and shadowgraphy. The results show a deceleration of the ions from 118 m.s(-1) at a distance of 400 mu m from the liquid surface to 7.1 m.s(-1) at a distance of 10 mm, which is caused by a pile-up effect. Furthermore, the desolvation kinetics were investigated and a first-order desolvation constant of 325 +/- 50 s(-1) was obtained. In the second part, the IR-MALDI-IM spectrometer is used as an HPLC detector for the two-dimensional separation of a pesticide mixture. KW - Ion mobility spectrometry KW - IR-MALDI KW - Shadowgraphy KW - Laser KW - Imaging KW - HPLC Y1 - 2016 U6 - https://doi.org/10.1007/s12127-016-0208-1 SN - 1435-6163 SN - 1865-4584 VL - 19 SP - 197 EP - 207 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Riebe, Daniel A1 - Eder, Alexander A1 - Ritschel, Thomas A1 - Beitz, Toralf A1 - Löhmannsröben, Hans-Gerd A1 - Beil, Andreas A1 - Blaschke, Michael A1 - Ludwig, Thomas T1 - Atmospheric pressure chemical ionization of explosives induced by soft X-radiation in ion mobility spectrometry: mass spectrometric investigation of the ionization reactions of drift gasses, dopants and alkyl nitrates JF - Journal of mass spectrometr N2 - A promising replacement for the radioactive sources commonly encountered in ion mobility spectrometers is a miniaturized, energy-efficient photoionization source that produce the reactant ions via soft X-radiation (2.8 keV). In order to successfully apply the photoionization source, it is imperative to know the spectrum of reactant ions and the subsequent ionization reactions leading to the detection of analytes. To that end, an ionization chamber based on the photoionization source that reproduces the ionization processes in the ion mobility spectrometer and facilitates efficient transfer of the product ions into a mass spectrometer was developed. Photoionization of pure gasses and gas mixtures containing air, N-2, CO2 and N2O and the dopant CH2Cl2 is discussed. The main product ions of photoionization are identified and compared with the spectrum of reactant ions formed by radioactive and corona discharge sources on the basis of literature data. The results suggest that photoionization by soft X-radiation in the negative mode is more selective than the other sources. In air, adduct ions of O-2 - with H2O and CO2 were exclusively detected. Traces of CO2 impact the formation of adduct ions of O-2 - and Cl -(upon addition of dopant) and are capable of suppressing them almost completely at high CO2 concentrations. Additionally, the ionization products of four alkyl nitrates (ethylene glycol dinitrate, nitroglycerin, erythritol tetranitrate and pentaerythritol tetranitrate) formed by atmospheric pressure chemical ionization induced by X-ray photoionization in different gasses (air, N-2 and N2O) and dopants (CH2Cl2, C2H5Br and CH3I) are investigated. The experimental studies are complemented by density functional theory calculations of the most important adduct ions of the alkyl nitrates (M) used for their spectrometric identification. In addition to the adduct ions [M + NO3](-) and [M + Cl](-), adduct ions such as [M + N2O2](-), [M + Br](-) and [M+ I](-) were detected, and their gas-phase structures and energetics are investigated by density functional theory calculations. Copyright (C) 2016 John Wiley & Sons, Ltd. KW - ion mobility spectrometry KW - mass spectrometry KW - explosives KW - X-ray KW - photoionization KW - alkyl nitrates Y1 - 2016 U6 - https://doi.org/10.1002/jms.3784 SN - 1076-5174 SN - 1096-9888 VL - 51 SP - 566 EP - 577 PB - Wiley-Blackwell CY - Hoboken ER - TY - THES A1 - Riebe, Daniel T1 - Experimental and theoretical investigations of molecular ions by spectroscopy as well as ion mobility and mass spectrometry T1 - Experimentelle und theoretische Untersuchungen molekularer Ionen durch Spektroskopie sowie Ionenmobilitäts- und Massenspektrometrie N2 - The aim of this thesis was the elucidation of different ionization methods (resonance-enhanced multiphoton ionization – REMPI, electrospray ionization – ESI, atmospheric pressure chemical ionization – APCI) in ion mobility (IM) spectrometry. In order to gain a better understanding of the ionization processes, several spectroscopic, mass spectrometric and theoretical methods were also used. Another focus was the development of experimental techniques, including a high resolution spectrograph and various combinations of IM and mass spectrometry. The novel high resolution 2D spectrograph facilitates spectroscopic resolutions in the range of commercial echelle spectrographs. The lowest full width at half maximum of a peak achieved was 25 pm. The 2D spectrograph is based on the wavelength separation of light by the combination of a prism and a grating in one dimension, and an etalon in the second dimension. This instrument was successfully employed for the acquisition of Raman and laser-induced breakdown spectra. Different spectroscopic methods (light scattering and fluorescence spectroscopy) permitting a spatial as well as spectral resolution, were used to investigate the release of ions in the electrospray. The investigation is based on the 50 nm shift of the fluorescence band of rhodamine 6G ions of during the transfer from the electrospray droplets to the gas phase. A newly developed ionization chamber operating at reduced pressure (0.5 mbar) was coupled to a time-of-flight mass spectrometer. After REMPI of H2S, an ionization chemistry analogous to H2O was observed with this instrument. Besides H2S+ and its fragments, H3S+ and protonated analyte ions could be observed as a result of proton-transfer reactions. For the elucidation of the peaks in IM spectra, a combination of IM spectrometer and linear quadrupole ion trap mass spectrometer was developed. The instrument can be equipped with various ionization sources (ESI, REMPI, APCI) and was used for the characterization of the peptide bradykinin and the neuroleptic promazine. The ionization of explosive compounds in an APCI source based on soft x-radiation was investigated in a newly developed ionization chamber attached to the ion trap mass spectrometer. The major primary and secondary reactions could be characterized and explosive compound ions could be identified and assigned to the peaks in IM spectra. The assignment is based on the comparison of experimentally determined and calculated IM. The methods of calculation currently available exhibit large deviations, especially in the case of anions. Therefore, on the basis of an assessment of available methods, a novel hybrid method was developed and characterized. N2 - Ziel dieser Arbeit war die Aufklärung unterschiedlicher Ionisationsmethoden (Resonanz-verstärkte Mehrphotonenionisation – REMPI, Elektrosprayionisation – ESI, chemische Ionisation bei Atmosphärendruck – APCI) in der Ionenmobilitäts (IM)-Spektrometrie. Um ein besseres Verständnis der Ionisationsprozesse zu erhalten, wurden zusätzlich ver¬schiedene spektroskopische, massenspektrometrische und theoretische Methoden eingesetzt. Ein weiterer Schwerpunkt war die Entwicklung neuer experimenteller Techniken, darunter ein hochauflösender Spektrograph und verschiedene Kombinationen von IM- und Massenspektrometern. Der neuartige, hochauflösende 2D Spektrograph ermöglicht spektroskopische Auflösungen im Bereich kommerzieller Echelle-Spektrographen. Die geringste erreichte Halbwertsbreite eines Peaks betrug 25 pm. Der 2D Spektrograph beruht auf der Wellenlängenseparation von Licht durch eine Kombination aus einem Prisma und einem Gitter in der einen Dimension und einem Etalon in der zweiten Dimension. Das Instrument wurde erfolgreich zur Aufnahme von Raman- und laserinduzierten Plasmaspektren ein¬gesetzt. Verschiedene spektroskopische Methoden (Lichtstreuung und Fluoreszenzspektroskopie), die sowohl eine räumliche, als auch eine spektrale Auflösung erlauben, wurden zur Untersuchung der Freisetzung der Ionen im Elektrospray angewandt. Die Untersuchung beruht auf der Verschiebung der Fluoreszenzbande von Rhodamin 6G-Ionen um 50 nm beim Übergang aus den Elektrospray-Tropfen in die Gasphase. Eine neuent¬wickelte Ionisationskammer bei reduziertem Druck (0,5 mbar) wurde an ein Flugzeit-Massenspektrometer gekoppelt. Darin wurde nach REMPI von H2S eine zum H2O analoge Ionisationschemie beobachtet. Neben H2S+ und seinen Fragmenten wurden als Ergebnis von Proto-nen-Transferreaktionen H3S+ und protonierte Analytionen beobachtet. Zur Aufklärung der Peaks in IM-Spektren wurde eine Kopplung von IM-Spektrometer und linearem Quadrupol-Ionenfallen-Massenspektrometer entwickelt. Die Kopplung kann mit verschiedenen Ionisationsquellen (ESI, REMPI, APCI) ausgestattet werden und wurde zur Charakterisierung des Peptids Bradykinin und des Neuroleptikums Promazin angewendet. Die Ionisation von Sprengstoffen in einer APCI-Quelle, die auf weicher Röntgenstrahlung beruht, wurde in einer neu entwickelten, an das Ionenfallen-Massenspektrometer gekoppelten Ionisationskammer untersucht. Dabei konnten die wichtigsten Primär- und Sekundärreaktionen charakterisiert, sowie Sprengstoffionen identifiziert und den Peaks in den IM-Spektren zugeordnet werden. Diese Zuordnung beruht auf dem Vergleich von experimentell bestimmten und berechneten IM. Da die aktuell verfügbaren Berechnungsmethoden insbesondere für Anionen zu große Abweichungen zu den experimentell bestimmten IM aufweisen, wurde auf Basis der Bewertung verfügbarer Methoden eine neue Hybridmethode entwickelt und charakterisiert. KW - ion mobility spectrometry KW - mass spectrometry KW - explosives KW - X-ray KW - photoionization KW - ion mobility calculations KW - Ionenmobilitätsspektrometrie KW - Massenspektrometrie KW - Sprengstoffe KW - Röntgenstrahlung KW - Photoionisation KW - Ionenmobilitäts-Berechnungen Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-94632 ER -