TY - JOUR A1 - Shin, Seoleun A1 - Zöller, Gert A1 - Holschneider, Matthias A1 - Reich, Sebastian T1 - A multigrid solver for modeling complex interseismic stress fields JF - Computers & geosciences : an international journal devoted to the publication of papers on all aspects of geocomputation and to the distribution of computer programs and test data sets ; an official journal of the International Association for Mathematical Geology N2 - We develop a multigrid, multiple time stepping scheme to reduce computational efforts for calculating complex stress interactions in a strike-slip 2D planar fault for the simulation of seismicity. The key elements of the multilevel solver are separation of length scale, grid-coarsening, and hierarchy. In this study the complex stress interactions are split into two parts: the first with a small contribution is computed on a coarse level, and the rest for strong interactions is on a fine level. This partition leads to a significant reduction of the number of computations. The reduction of complexity is even enhanced by combining the multigrid with multiple time stepping. Computational efficiency is enhanced by a factor of 10 while retaining a reasonable accuracy, compared to the original full matrix-vortex multiplication. The accuracy of solution and computational efficiency depend on a given cut-off radius that splits multiplications into the two parts. The multigrid scheme is constructed in such a way that it conserves stress in the entire half-space. KW - Multigrid KW - Multiple time stepping KW - Strike-slip fault model Y1 - 2011 U6 - https://doi.org/10.1016/j.cageo.2010.11.011 SN - 0098-3004 VL - 37 IS - 8 SP - 1075 EP - 1082 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Reich, Sebastian T1 - A dynamical systems framework for intermittent data assimilation JF - BIT : numerical mathematics ; the leading applied mathematics journal for all computational mathematicians N2 - We consider the problem of discrete time filtering (intermittent data assimilation) for differential equation models and discuss methods for its numerical approximation. The focus is on methods based on ensemble/particle techniques and on the ensemble Kalman filter technique in particular. We summarize as well as extend recent work on continuous ensemble Kalman filter formulations, which provide a concise dynamical systems formulation of the combined dynamics-assimilation problem. Possible extensions to fully nonlinear ensemble/particle based filters are also outlined using the framework of optimal transportation theory. KW - Data assimilation KW - Ensemble Kalman filter KW - Dynamical systems KW - Nonlinear filters KW - Optimal transportation Y1 - 2011 U6 - https://doi.org/10.1007/s10543-010-0302-4 SN - 0006-3835 VL - 51 IS - 1 SP - 235 EP - 249 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Skeel, R. D. A1 - Reich, Sebastian T1 - Corrected potential energy functions for constrained molecular dynamics JF - European physical journal special topics N2 - Atomic oscillations present in classical molecular dynamics restrict the step size that can be used. Multiple time stepping schemes offer only modest improvements, and implicit integrators are costly and inaccurate. The best approach may be to actually remove the highest frequency oscillations by constraining bond lengths and bond angles, thus permitting perhaps a 4-fold increase in the step size. However, omitting degrees of freedom produces errors in statistical averages, and rigid angles do not bend for strong excluded volume forces. These difficulties can be addressed by an enhanced treatment of holonomic constrained dynamics using ideas from papers of Fixman (1974) and Reich (1995, 1999). In particular, the 1995 paper proposes the use of "flexible" constraints, and the 1999 paper uses a modified potential energy function with rigid constraints to emulate flexible constraints. Presented here is a more direct and rigorous derivation of the latter approach, together with justification for the use of constraints in molecular modeling. With rigor comes limitations, so practical compromises are proposed: simplifications of the equations and their judicious application when assumptions are violated. Included are suggestions for new approaches. Y1 - 2011 U6 - https://doi.org/10.1140/epjst/e2011-01518-8 SN - 1951-6355 VL - 200 IS - 1 SP - 55 EP - 72 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Gottwald, Georg A. A1 - Mitchell, Lewis A1 - Reich, Sebastian T1 - Controlling overestimation of error covariance in ensemble kalman filters with sparse observations a variance-limiting kalman filter JF - Monthly weather review N2 - The problem of an ensemble Kalman filter when only partial observations are available is considered. In particular, the situation is investigated where the observational space consists of variables that are directly observable with known observational error, and of variables of which only their climatic variance and mean are given. To limit the variance of the latter poorly resolved variables a variance-limiting Kalman filter (VLKF) is derived in a variational setting. The VLKF for a simple linear toy model is analyzed and its range of optimal performance is determined. The VLKF is explored in an ensemble transform setting for the Lorenz-96 system, and it is shown that incorporating the information of the variance of some unobservable variables can improve the skill and also increase the stability of the data assimilation procedure. Y1 - 2011 U6 - https://doi.org/10.1175/2011MWR3557.1 SN - 0027-0644 VL - 139 IS - 8 SP - 2650 EP - 2667 PB - American Meteorological Soc. CY - Boston ER - TY - JOUR A1 - Malic, E. A1 - Weber, C. A1 - Richter, M. A1 - Atalla, V. A1 - Klamroth, Tillmann A1 - Saalfrank, Peter A1 - Reich, Sebastian A1 - Knorr, A. T1 - Microscopic model of the optical absorption of carbon nanotubes functionalized with molecular spiropyran photoswitches JF - Physical review letters N2 - The adsorption of molecules to the surface of carbon nanostructures opens a new field of hybrid systems with distinct and controllable properties. We present a microscopic study of the optical absorption in carbon nanotubes functionalized with molecular spiropyran photoswitches. The switching process induces a change in the dipole moment leading to a significant coupling to the charge carriers in the nanotube. As a result, the absorption spectra of functionalized tubes reveal a considerable redshift of transition energies depending on the switching state of the spiropyran molecule. Our results suggest that carbon nanotubes are excellent substrates for the optical readout of spiropyran-based molecular switches. The gained insights can be applied to other noncovalently functionalized one-dimensional nanostructures in an externally induced dipole field. Y1 - 2011 U6 - https://doi.org/10.1103/PhysRevLett.106.097401 SN - 0031-9007 VL - 106 IS - 9 PB - American Physical Society CY - College Park ER -