TY - JOUR A1 - Bohle, Hannah A1 - Rimpel, Jérôme A1 - Schauenburg, Gesche A1 - Gebel, Arnd A1 - Stelzel, Christine A1 - Heinzel, Stephan A1 - Rapp, Michael Armin A1 - Granacher, Urs T1 - Behavioral and Neural Correlates of Cognitive-Motor Interference during Multitasking in Young and Old Adults JF - Neural Plasticity N2 - The concurrent performance of cognitive and postural tasks is particularly impaired in old adults and associated with an increased risk of falls. Biological aging of the cognitive and postural control system appears to be responsible for increased cognitive-motor interference effects. We examined neural and behavioral markers of motor-cognitive dual-task performance in young and old adults performing spatial one-back working memory single and dual tasks during semitandem stance. On the neural level, we used EEG to test for age-related modulations in the frequency domain related to cognitive-postural task load. Twenty-eight healthy young and 30 old adults participated in this study. The tasks included a postural single task, a cognitive-postural dual task, and a cognitive-postural triple task (cognitive dual-task with postural demands). Postural sway (i.e., total center of pressure displacements) was recorded in semistance position on an unstable surface that was placed on top of a force plate while performing cognitive tasks. Neural activation was recorded using a 64-channel mobile EEG system. EEG frequencies were attenuated by the baseline postural single-task condition and demarcated in nine Regions-of-Interest (ROIs), i.e., anterior, central, posterior, over the cortical midline, and both hemispheres. Our findings revealed impaired cognitive dual-task performance in old compared to young participants in the form of significantly lower cognitive performance in the triple-task condition. Furthermore, old adults compared with young adults showed significantly larger postural sway, especially in cognitive-postural task conditions. With respect to EEG frequencies, young compared to old participants showed significantly lower alpha-band activity in cognitive-cognitive-postural triple-task conditions compared with cognitive-postural dual tasks. In addition, with increasing task difficulty, we observed synchronized theta and delta frequencies, irrespective of age. Taskdependent alterations of the alpha frequency band were most pronounced over frontal and central ROIs, while alterations of the theta and delta frequency bands were found in frontal, central, and posterior ROIs. Theta and delta synchronization exhibited a decrease from anterior to posterior regions. For old adults, task difficulty was reflected by theta synchronization in the posterior ROI. For young adults, it was reflected by alpha desynchronization in bilateral anterior ROIs. In addition, we could not identify any effects of task difficulty and age on the beta frequency band. Our results shed light on age-related cognitive and postural declines and how they interact. Modulated alpha frequencies during high cognitive-postural task demands in young but not old adults might be reflective of a constrained neural adaptive potential in old adults. Future studies are needed to elucidate associations between the identified age-related performance decrements with task difficulty and changes in brain activity. Y1 - 2019 U6 - https://doi.org/10.1155/2019/9478656 SN - 2090-5904 SN - 1687-5443 PB - Hindawi CY - New York ER - TY - JOUR A1 - Brahms, Markus A1 - Heinzel, Stephan A1 - Rapp, Michael Armin A1 - Mückstein, Marie A1 - Hortobágyi, Tibor A1 - Stelzel, Christine A1 - Granacher, Urs T1 - The acute effects of mental fatigue on balance performance in healthy young and older adults – A systematic review and meta-analysis JF - Acta Psychologica N2 - Cognitive resources contribute to balance control. There is evidence that mental fatigue reduces cognitive resources and impairs balance performance, particularly in older adults and when balance tasks are complex, for example when trying to walk or stand while concurrently performing a secondary cognitive task. We conducted a systematic literature search in PubMed (MEDLINE), Web of Science and Google Scholar to identify eligible studies and performed a random effects meta-analysis to quantify the effects of experimentally induced mental fatigue on balance performance in healthy adults. Subgroup analyses were computed for age (healthy young vs. healthy older adults) and balance task complexity (balance tasks with high complexity vs. balance tasks with low complexity) to examine the moderating effects of these factors on fatigue-mediated balance performance. We identified 7 eligible studies with 9 study groups and 206 participants. Analysis revealed that performing a prolonged cognitive task had a small but significant effect (SMDwm = −0.38) on subsequent balance performance in healthy young and older adults. However, age- and task-related differences in balance responses to fatigue could not be confirmed statistically. Overall, aggregation of the available literature indicates that mental fatigue generally reduces balance in healthy adults. However, interactions between cognitive resource reduction, aging and balance task complexity remain elusive. KW - Cognitive fatigue KW - Exertion KW - Tiredness KW - Postural control KW - Gait KW - Sway Y1 - 2022 U6 - https://doi.org/10.1016/j.actpsy.2022.103540 SN - 1873-6297 VL - 225 SP - 1 EP - 13 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Heinzel, Stephan A1 - Lawrence, Jimmy B. A1 - Kallies, Gunnar A1 - Rapp, Michael Armin A1 - Heissel, Andreas T1 - Using Exercise to Fight Depression in Older Adults BT - A Systematic Review and Meta-Analysis JF - GeroPsych : the journal of gerontopsychology and geriatric psychiatry N2 - Depression is the most prevalent psychiatric disorder in the general population. Despite a large demand for efficient treatment options, the majority of older depressed adults does not receive adequate treatment: Additional low-threshold treatments are needed for this age group. Over the past two decades, a growing number of randomized controlled trials (RCT) have been conducted, testing the efficacy of physical exercise in the alleviation of depression in older adults. This meta-analysis systematically reviews and evaluates these studies; some subanalyses testing specific effects of different types of exercise and settings are also performed. In order to be included, exercise programs of the RCTs had to fulfill the criteria of exercise according to the American College of Sports Medicine, including a sample mean age of 60 or above and an increased level of depressive symptoms. Eighteen trials with 1,063 participants fulfilled our inclusion criteria. A comparison of the posttreatment depression scores between the exercise and control groups revealed a moderate effect size in favor of the exercise groups (standardized mean difference (SMD) of –0.68, p < .001). The effect was comparable to the results achieved when only the eleven trials with low risk of bias were included (SMD = –0.63, p < .001). The subanalyses showed significant effects for all types of exercise and for supervised interventions. The results of this meta-analysis suggest that physical exercise may serve as a feasible, additional intervention to fight depression in older adults. However, because of small sample sizes of the majority of individual trials and high statistical heterogeneity, results must be interpreted carefully. KW - depression KW - exercise KW - older adults KW - meta-analysis KW - review Y1 - 2015 U6 - https://doi.org/10.1024/1662-9647/a000133 SN - 1662-9647 SN - 1662-971X VL - 28 SP - 149 EP - 162 PB - Hogrefe CY - Cambridge, Mass. ; Göttingen [u.a.] ER - TY - JOUR A1 - Heinzel, Stephan A1 - Lorenz, Robert C. A1 - Brockhaus, Wolf-Ruediger A1 - Wuestenberg, Torsten A1 - Kathmann, Norbert A1 - Heinz, Andreas A1 - Rapp, Michael Armin T1 - Working memory load-dependent brain response predicts behavioral training gains in older adults JF - The journal of neuroscience N2 - In the domain of working memory (WM), a sigmoid-shaped relationship between WM load and brain activation patterns has been demonstrated in younger adults. It has been suggested that age-related alterations of this pattern are associated with changes in neural efficiency and capacity. At the same time, WM training studies have shown that some older adults are able to increase their WM performance through training. In this study, functional magnetic resonance imaging during an n-back WM task at different WM load levels was applied to compare blood oxygen level-dependent (BOLD) responses between younger and older participants and to predict gains in WM performance after a subsequent 12-session WM training procedure in older adults. We show that increased neural efficiency and capacity, as reflected by more "youth-like" brain response patterns in regions of interest of the frontoparietal WM network, were associated with better behavioral training outcome beyond the effects of age, sex, education, gray matter volume, and baseline WM performance. Furthermore, at low difficulty levels, decreases in BOLD response were found after WM training. Results indicate that both neural efficiency (i. e., decreased activation at comparable performance levels) and capacity (i. e., increasing activation with increasing WM load) of a WM-related network predict plasticity of the WM system, whereas WM training may specifically increase neural efficiency in older adults. KW - aging KW - fMRI KW - neuroimaging KW - plasticity KW - training KW - working memory Y1 - 2014 U6 - https://doi.org/10.1523/JNEUROSCI.2463-13.2014 SN - 0270-6474 VL - 34 IS - 4 SP - 1224 EP - 1233 PB - Society for Neuroscience CY - Washington ER - TY - JOUR A1 - Heinzel, Stephan A1 - Lorenz, Robert C. A1 - Pelz, Patricia A1 - Heinz, Andreas A1 - Walter, Henrik A1 - Kathmann, Norbert A1 - Rapp, Michael Armin A1 - Stelzel, Christine T1 - Neural correlates of training and transfer effects in working memory in older adults JF - NeuroImage : a journal of brain function N2 - As indicated by previous research, aging is associated with a decline in working memory (WM) functioning, related to alterations in fronto-parietal neural activations. At the same time, previous studies showed that WM training in older adults may improve the performance in the trained task (training effect), and more importantly, also in untrained WM tasks (transfer effects). However, neural correlates of these transfer effects that would improve understanding of its underlying mechanisms, have not been shown in older participants as yet. In this study, we investigated blood-oxygen-level-dependent (BOLD) signal changes during n-back performance and an untrained delayed recognition (Sternberg) task following 12 sessions (45 min each) of adaptive n-back training in older adults. The Sternberg task used in this study allowed to test for neural training effects independent of specific task affordances of the trained task and to separate maintenance from updating processes. Thirty-two healthy older participants (60-75 years) were assigned either to an n-back training or a no-contact control group. Before (t1) and after (t2) training/waiting period, both the n-back task and the Sternberg task were conducted while BOLD signal was measured using functional Magnetic Resonance Imaging (fMRI) in all participants. In addition, neuropsychological tests were performed outside the scanner. WM performance improved with training and behavioral transfer to tests measuring executive functions, processing speed, and fluid intelligence was found. In the training group, BOLD signal in the right lateral middle frontal gyrus/caudal superior frontal sulcus (Brodmann area, BA 6/8) decreased in both the trained n-back and the updating condition of the untrained Sternberg task at t2, compared to the control group. fMRI findings indicate a training-related increase in processing efficiency of WM networks, potentially related to the process of WM updating. Performance gains in untrained tasks suggest that transfer to other cognitive tasks remains possible in aging. (C) 2016 Elsevier Inc. All rights reserved. KW - Aging KW - Working memory KW - Training KW - Transfer KW - Neuroimaging KW - fMRI KW - Updating KW - Executive functions KW - Fluid intelligence Y1 - 2016 U6 - https://doi.org/10.1016/j.neuroimage.2016.03.068 SN - 1053-8119 SN - 1095-9572 VL - 134 SP - 236 EP - 249 PB - Elsevier CY - San Diego ER - TY - JOUR A1 - Heinzel, Stephan A1 - Lorenz, Robert C. A1 - Quynh-Lam Duong, A1 - Rapp, Michael Armin A1 - Deserno, Lorenz T1 - Prefrontal-parietal effective connectivity during working memory in older adults JF - Neurobiology of Aging N2 - Theoretical models and preceding studies have described age-related alterations in neuronal activation of frontoparietal regions in a working memory (WM)load-dependent manner. However, to date, underlying neuronal mechanisms of these WM load-dependent activation changes in aging remain poorly understood. The aim of this study was to investigate these mechanisms in terms of effective connectivity by application of dynamic causal modeling with Bayesian Model Selection. Eighteen healthy younger (age: 20-32 years) and 32 older (60-75 years) participants performed an n-back task with 3 WM load levels during functional magnetic resonance imaging (fMRI). Behavioral and conventional fMRI results replicated age group by WM load interactions. Importantly, the analysis of effective connectivity derived from dynamic causal modeling, indicated an age-and performance-related reduction in WM load-dependent modulation of connectivity from dorsolateral prefrontal cortex to inferior parietal lobule. This finding provides evidence for the proposal that age-related WM decline manifests as deficient WM load-dependent modulation of neuronal top-down control and can integrate implications from theoretical models and previous studies of functional changes in the aging brain. KW - Aging KW - Dynamic causal modeling (DCM) KW - Effective connectivity KW - Functional magnetic resonance imaging (fMRI) KW - Working memory Y1 - 2017 U6 - https://doi.org/10.1016/j.neurobiolaging.2017.05.005 SN - 0197-4580 SN - 1558-1497 VL - 57 SP - 18 EP - 27 PB - Elsevier CY - New York ER - TY - JOUR A1 - Heinzel, Stephan A1 - Rapp, Michael Armin A1 - Fydrich, Thomas A1 - Ströhle, Andreas A1 - Teran, Christina A1 - Kallies, Gunnar A1 - Schwefel, Melanie A1 - Heissel, Andreas T1 - Neurobiological mechanisms of exercise and psychotherapy in depression BT - the SPeED studyRationale, design, and methodological issues JF - Clinical Trials N2 - Background/Aims: Even though cognitive behavioral therapy has become a relatively effective treatment for major depressive disorder and cognitive behavioral therapy-related changes of dysfunctional neural activations were shown in recent studies, remission rates still remain at an insufficient level. Therefore, the implementation of effective augmentation strategies is needed. In recent meta-analyses, exercise therapy (especially endurance exercise) was reported to be an effective intervention in major depressive disorder. Despite these findings, underlying mechanisms of the antidepressant effect of exercise especially in combination with cognitive behavioral therapy have rarely been studied to date and an investigation of its neural underpinnings is lacking. A better understanding of the psychological and neural mechanisms of exercise and cognitive behavioral therapy would be important for developing optimal treatment strategies in depression. The SPeED study (Sport/Exercise Therapy and Psychotherapyevaluating treatment Effects in Depressive patients) is a randomized controlled trial to investigate underlying physiological, neurobiological, and psychological mechanisms of the augmentation of cognitive behavioral therapy with endurance exercise. It is investigated if a preceding endurance exercise program will enhance the effect of a subsequent cognitive behavioral therapy. Methods: This study will include 105 patients diagnosed with a mild or moderate depressive episode according to the Diagnostic and Statistical Manual of Mental Disorders (4th ed.). The participants are randomized into one of three groups: a high-intensive or a low-intensive endurance exercise group or a waiting list control group. After the exercise program/waiting period, all patients receive an outpatient cognitive behavioral therapy treatment according to a standardized therapy manual. At four measurement points, major depressive disorder symptoms (Beck Depression Inventory, Hamilton Rating Scale for Depression), (neuro)biological measures (neural activations during working memory, monetary incentive delay task, and emotion regulation, as well as cortisol levels and brain-derived neurotrophic factor), neuropsychological test performance, and questionnaires (psychological needs, self-efficacy, and quality of life) are assessed. Results: In this article, we report the design of the SPeED study and refer to important methodological issues such as including both high- and low-intensity endurance exercise groups to allow the investigation of dose-response effects and physiological components of the therapy effects. Conclusion: The main aims of this research project are to study effects of endurance exercise and cognitive behavioral therapy on depressive symptoms and to investigate underlying physiological and neurobiological mechanisms of these effects. Results may provide important implications for the development of effective treatment strategies in major depressive disorder, specifically concerning the augmentation of cognitive behavioral therapy by endurance exercise. KW - Major depressive disorder KW - depression KW - psychotherapy KW - cognitive behavioral therapy KW - endurance exercise KW - training KW - functional magnetic resonance imaging KW - brain-derived neurotrophic factor KW - basic psychological needs KW - cortisol Y1 - 2017 U6 - https://doi.org/10.1177/1740774517729161 SN - 1740-7745 SN - 1740-7753 VL - 15 IS - 1 SP - 53 EP - 64 PB - Sage Publ. CY - London ER - TY - JOUR A1 - Heinzel, Stephan A1 - Riemer, Thomas G. A1 - Schulte, Stefanie A1 - Onken, Johanna A1 - Heinz, Andreas A1 - Rapp, Michael Armin T1 - Catechol-O-methyltransferase (COMT) genotype affects age-related changes in plasticity in working memory: a pilot study JF - BioMed research international N2 - Objectives. Recent work suggests that a genetic variation associated with increased dopamine metabolism in the prefrontal cortex (catechol-O-methyltransferase Val158Met; COMT) amplifies age-related changes in working memory performance. Research on younger adults indicates that the influence of dopamine-related genetic polymorphisms on working memory performance increases when testing the cognitive limits through training. To date, this has not been studied in older adults. Method. Here we investigate the effect of COMT genotype on plasticity in working memory in a sample of 14 younger (aged 24-30 years) and 25 older (aged 60-75 years) healthy adults. Participants underwent adaptive training in the n-back working memory task over 12 sessions under increasing difficulty conditions. Results. Both younger and older adults exhibited sizeable behavioral plasticity through training (P < .001), which was larger in younger as compared to older adults (P < .001). Age-related differences were qualified by an interaction with COMT genotype (P < .001), and this interaction was due to decreased behavioral plasticity in older adults carrying the Val/Val genotype, while there was no effect of genotype in younger adults. Discussion. Our findings indicate that age-related changes in plasticity in working memory are critically affected by genetic variation in prefrontal dopamine metabolism. Y1 - 2014 U6 - https://doi.org/10.1155/2014/414351 SN - 2314-6133 SN - 2314-6141 PB - Hindawi Publishing Corp. CY - New York ER - TY - JOUR A1 - Heinzel, Stephan A1 - Rimpel, Jérôme A1 - Stelzel, Christine A1 - Rapp, Michael Armin T1 - Transfer Effects to a Multimodal Dual-Task after Working Memory Training and Associated Neural Correlates in Older Adults BT - A Pilot Study JF - Frontiers in human neuroscience N2 - Working memory (WM) performance declines with age. However, several studies have shown that WM training may lead to performance increases not only in the trained task, but also in untrained cognitive transfer tasks. It has been suggested that transfer effects occur if training task and transfer task share specific processing components that are supposedly processed in the same brain areas. In the current study, we investigated whether single-task WM training and training-related alterations in neural activity might support performance in a dual-task setting, thus assessing transfer effects to higher-order control processes in the context of dual-task coordination. A sample of older adults (age 60–72) was assigned to either a training or control group. The training group participated in 12 sessions of an adaptive n-back training. At pre and post-measurement, a multimodal dual-task was performed in all participants to assess transfer effects. This task consisted of two simultaneous delayed match to sample WM tasks using two different stimulus modalities (visual and auditory) that were performed either in isolation (single-task) or in conjunction (dual-task). A subgroup also participated in functional magnetic resonance imaging (fMRI) during the performance of the n-back task before and after training. While no transfer to single-task performance was found, dual-task costs in both the visual modality (p < 0.05) and the auditory modality (p < 0.05) decreased at post-measurement in the training but not in the control group. In the fMRI subgroup of the training participants, neural activity changes in left dorsolateral prefrontal cortex (DLPFC) during one-back predicted post-training auditory dual-task costs, while neural activity changes in right DLPFC during three-back predicted visual dual-task costs. Results might indicate an improvement in central executive processing that could facilitate both WM and dual-task coordination. KW - working memory KW - cognitive training KW - modality KW - dual-task KW - aging KW - transfer KW - fMRI KW - neuroimaging Y1 - 2017 U6 - https://doi.org/10.3389/fnhum.2017.00085 VL - 11 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Heissel, Andreas A1 - Pietrek, Anou F. A1 - Flunger, Barbara A1 - Fydrich, Thomas A1 - Rapp, Michael Armin A1 - Heinzel, Stephan A1 - Vansteenkiste, Maarten T1 - The Validation of the German Basic Psychological Need Satisfaction and Frustration Scale in the Context of Mental Health JF - European Journal of Health Psychology N2 - The primary aim of the current study was to examine the unique contribution of psychological need frustration and need satisfaction in the prediction of adults’ mental well-being and ill-being in a heterogeneous sample of adults (N = 334; Mage = 43.33, SD = 32.26; 53% females). Prior to this, validity evidence was provided for the German version of the Basic Psychological Need Satisfaction and Frustration Scale (BPNSFS) based on Self-Determination Theory (SDT). The results of the validation analyses found the German BPNSFS to be a valid and reliable measurement. Further, structural equation modeling (SEM) showed that both need satisfaction and frustration yielded unique and opposing associations with well-being. Specifically, the dimension of psychological need frustration predicted adults’ ill-being. Future research should examine whether frustration of psychological needs is involved in the onset and maintenance of psychopathology (e.g., major depressive disorder). KW - basic psychological need frustration KW - need satisfaction KW - mental health KW - well-being KW - depression Y1 - 2018 U6 - https://doi.org/10.1027/2512-8442/a000017 SN - 2512-8442 SN - 2512-8450 VL - 25 IS - 4 SP - 119 EP - 132 PB - Hogrefe CY - Göttingen ER -