TY - JOUR A1 - Soergel, Bjoern A1 - Kriegler, Elmar A1 - Weindl, Isabelle A1 - Rauner, Sebastian A1 - Dirnaichner, Alois A1 - Ruhe, Constantin A1 - Hofmann, Matthias A1 - Bauer, Nico A1 - Bertram, Christoph A1 - Bodirsky, Benjamin Leon A1 - Leimbach, Marian A1 - Leininger, Julia A1 - Levesque, Antoine A1 - Luderer, Gunnar A1 - Pehl, Michaja A1 - Wingens, Christopher A1 - Baumstark, Lavinia A1 - Beier, Felicitas A1 - Dietrich, Jan Philipp A1 - Humpenöder, Florian A1 - von Jeetze, Patrick A1 - Klein, David A1 - Koch, Johannes A1 - Pietzcker, Robert C. A1 - Strefler, Jessica A1 - Lotze-Campen, Hermann A1 - Popp, Alexander T1 - A sustainable development pathway for climate action within the UN 2030 Agenda JF - Nature climate change N2 - Ambitious climate policies, as well as economic development, education, technological progress and less resource-intensive lifestyles, are crucial elements for progress towards the UN Sustainable Development Goals (SDGs). However, using an integrated modelling framework covering 56 indicators or proxies across all 17 SDGs, we show that they are insufficient to reach the targets. An additional sustainable development package, including international climate finance, progressive redistribution of carbon pricing revenues, sufficient and healthy nutrition and improved access to modern energy, enables a more comprehensive sustainable development pathway. We quantify climate and SDG outcomes, showing that these interventions substantially boost progress towards many aspects of the UN Agenda 2030 and simultaneously facilitate reaching ambitious climate targets. Nonetheless, several important gaps remain; for example, with respect to the eradication of extreme poverty (180 million people remaining in 2030). These gaps can be closed by 2050 for many SDGs while also respecting the 1.5 °C target and several other planetary boundaries. KW - climate-change mitigation KW - climate-change policy KW - socioeconomic scenarios KW - sustainability Y1 - 2021 U6 - https://doi.org/10.1038/s41558-021-01098-3 SN - 1758-678X SN - 1758-6798 VL - 11 IS - 8 SP - 656 EP - 664 PB - Nature Publishing Group CY - London ER - TY - JOUR A1 - Soergel, Bjoern A1 - Kriegler, Elmar A1 - Bodirsky, Benjamin Leon A1 - Bauer, Nico A1 - Leimbach, Marian A1 - Popp, Alexander T1 - Combining ambitious climate policies with efforts to eradicate poverty JF - Nature Communications N2 - Climate change threatens to undermine efforts to eradicate extreme poverty. However, climate policies could impose a financial burden on the global poor through increased energy and food prices. Here, we project poverty rates until 2050 and assess how they are influenced by mitigation policies consistent with the 1.5 degrees C target. A continuation of historical trends will leave 350 million people globally in extreme poverty by 2030. Without progressive redistribution, climate policies would push an additional 50 million people into poverty. However, redistributing the national carbon pricing revenues domestically as an equal-per-capita climate dividend compensates this policy side effect, even leading to a small net reduction of the global poverty headcount (-6 million). An additional international climate finance scheme enables a substantial poverty reduction globally and also in Sub-Saharan Africa. Combining national redistribution with international climate finance thus provides an important entry point to climate policy in developing countries. Ambitious climate policies can negatively impact the global poor by affecting income, food and energy prices. Here, the authors quantify this effect, and show that it can be compensated by national redistribution of the carbon pricing revenues in combination with international climate finance. Y1 - 2021 U6 - https://doi.org/10.1038/s41467-021-22315-9 SN - 2041-1723 VL - 12 PB - Nature Publishing Group CY - London ER - TY - CHAP A1 - Rossmanith, Eva A1 - Blaum, Niels A1 - Keil, Manfred A1 - Langerwisch, F. A1 - Meyer, Jork A1 - Popp, Alexander A1 - Schmidt, Michael A1 - Schultz, Christoph A1 - Schwager, Monika A1 - Vogel, Melanie A1 - Wasiolka, Bernd A1 - Jeltsch, Florian T1 - Scaling up local population dynamics to regional scales BT - an integrated approach N2 - In semi-arid savannas, unsustainable land use can lead to degradation of entire landscapes, e.g. in the form of shrub encroachment. This leads to habitat loss and is assumed to reduce species diversity. In BIOTA phase 1, we investigated the effects of land use on population dynamics on farm scale. In phase 2 we scale up to consider the whole regional landscape consisting of a diverse mosaic of farms with different historic and present land use intensities. This mosaic creates a heterogeneous, dynamic pattern of structural diversity at a large spatial scale. Understanding how the region-wide dynamic land use pattern affects the abundance of animal and plant species requires the integration of processes on large as well as on small spatial scales. In our multidisciplinary approach, we integrate information from remote sensing, genetic and ecological field studies as well as small scale process models in a dynamic region-wide simulation tool.
Interdisziplinäres Zentrum für Musterdynamik und Angewandte Fernerkundung Workshop vom 9. - 10. Februar 2006. Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-7320 N1 - [Poster] ER - TY - JOUR A1 - Riahi, Keywan A1 - Bertram, Christoph A1 - Huppmann, Daniel A1 - Rogelj, Joeri A1 - Bosetti, Valentina A1 - Cabardos, Anique-Marie A1 - Deppermann, Andre A1 - Drouet, Laurent A1 - Frank, Stefan A1 - Fricko, Oliver A1 - Fujimori, Shinichiro A1 - Harmsen, Mathijs A1 - Hasegawa, Tomoko A1 - Krey, Volker A1 - Luderer, Gunnar A1 - Paroussos, Leonidas A1 - Schaeffer, Roberto A1 - Weitzel, Matthias A1 - van der Zwaan, Bob A1 - Vrontisi, Zoi A1 - Longa, Francesco Dalla A1 - Després, Jacques A1 - Fosse, Florian A1 - Fragkiadakis, Kostas A1 - Gusti, Mykola A1 - Humpenöder, Florian A1 - Keramidas, Kimon A1 - Kishimoto, Paul A1 - Kriegler, Elmar A1 - Meinshausen, Malte A1 - Nogueira, Larissa Pupo A1 - Oshiro, Ken A1 - Popp, Alexander A1 - Rochedo, Pedro R. R. A1 - Ünlü, Gamze A1 - van Ruijven, Bas A1 - Takakura, Junya A1 - Tavoni, Massimo A1 - van Vuuren, Detlef P. A1 - Zakeri, Behnam T1 - Cost and attainability of meeting stringent climate targets without overshoot JF - Nature climate change N2 - Global emissions scenarios play a critical role in the assessment of strategies to mitigate climate change. The current scenarios, however, are criticized because they feature strategies with pronounced overshoot of the global temperature goal, requiring a long-term repair phase to draw temperatures down again through net-negative emissions. Some impacts might not be reversible. Hence, we explore a new set of net-zero CO2 emissions scenarios with limited overshoot. We show that upfront investments are needed in the near term for limiting temperature overshoot but that these would bring long-term economic gains. Our study further identifies alternative configurations of net-zero CO2 emissions systems and the roles of different sectors and regions for balancing sources and sinks. Even without net-negative emissions, CO2 removal is important for accelerating near-term reductions and for providing an anthropogenic sink that can offset the residual emissions in sectors that are hard to abate. Y1 - 2021 U6 - https://doi.org/10.1038/s41558-021-01215-2 SN - 1758-678X SN - 1758-6798 VL - 11 IS - 12 SP - 1063 EP - 1069 PB - Nature Publishing Group CY - London ER - TY - JOUR A1 - Popp, Alexander A1 - Vogel, Melanie A1 - Blaum, Niels A1 - Jeltsch, Florian T1 - Scaling up ecohydrological processes : role of surface water flow in water-limited landscapes N2 - In this study, we present a stochastic landscape modeling approach that has the power to transfer and integrate existing information on vegetation dynamics and hydrological processes from the small scale to the landscape scale. To include microscale processes like ecohydrological feedback mechanisms and spatial exchange like surface water flow, we derive transition probabilities from a fine-scale simulation model. We applied two versions of the landscape model, one that includes and one that disregards spatial exchange of water to the situation of a sustainably used research farm and communally used and degraded rangeland in semiarid Namibia. Our simulation experiments show that including spatial exchange of overland flow among vegetation patches into our model is a precondition to reproduce vegetation dynamics, composition, and productivity, as well as hydrological processes at the landscape scale. In the model version that includes spatial exchange of water, biomass production at light grazing intensities increases 2.24-fold compared to the model without overland flow. In contrast, overgrazing destabilizes positive feedbacks through vegetation and hydrology and decreases the number of hydrological sinks in the model with overland flow. The buffer capacity of these hydrological sinks disappears and runoff increases. Here, both models predicted runoff losses from the system and artificial droughts occurring even in years with good precipitation. Overall, our study reveals that a thorough understanding of overland flow is an important precondition for improving the management of semiarid and arid rangelands with distinct topography. Y1 - 2009 UR - http://www.agu.org/journals/jg/ U6 - https://doi.org/10.1029/2008jg000910 SN - 0148-0227 ER - TY - JOUR A1 - Popp, Alexander A1 - Domptail, Stephanie A1 - Blaum, Niels A1 - Jeltsch, Florian T1 - Landuse experience does not qualify for adaptation to climate change N2 - The need to implement sustainable resource management regimes for semi-arid and arid rangelands is acute as non- adapted grazing strategies lead to irreversible environmental problems such as desertification and associated loss of economic support to society. In these sensitive ecosystems, traditional sectoral, disciplinary approaches will not work to attain sustainability: achieving a collective vision of how to attain sustainability requires interactive efforts among disciplines in a more integrated approach. Therefore, we developed an integrated ecological-economic approach that consists of an ecological and an economic module and combines relevant processes on either level. Parameters for both modules are adjusted for an arid dwarf shrub savannah in southern Namibia. The economic module is used to analyse decisions of different virtual farmer types on annual stocking rates depending on their knowledge how the ecosystem works and climatic conditions. We used a dynamic linear optimisation model to simulate farm economics and livestock dynamics. The ecological module is used to simulate the impact of the farmers' land-use decision, derived by the economic module, on ecosystem dynamics and resulting carrying capacity of the system for livestock. Vegetation dynamics, based on the concept of State-and-transition models, and forage productivity for both modules is derived by a small- scale and spatially explicit vegetation model. This mechanistic approach guarantees that data collected and processes estimated at smaller scales are included in our application. Simulation results of the ecological module were successfully compared to simulation results of the optimisation model for a time series of 30 years. We revealed that sustainable management of semi-arid and arid rangelands relies strongly on rangeland managers' understanding of ecological processes. Furthermore, our simulation results demonstrate that the projected lower annual rainfall due to climate change adds an additional layer of risk to these ecosystems that are already prone to land degradation. Y1 - 2009 UR - http://www.sciencedirect.com/science/journal/03043800 U6 - https://doi.org/10.1016/j.ecolmodel.2008.11.015 SN - 0304-3800 ER - TY - JOUR A1 - Popp, Alexander A1 - Blaum, Niels A1 - Jeltsch, Florian T1 - Ecohydrological feedback mechanisms in arid rangelands : simulating the impacts of topography and land use N2 - The interaction between ecological and hydrological processes is particularly important in arid and semi-arid regions. Often the interaction between these processes is not completely understood and they are studied separately. We developed a grid-based computer model simulating the dynamics of the four most common vegetation types (perennial grass, annuals, dwarf shrubs and shrubs) and related hydrological processes in the region studied. Eco-hydrological interactions gain importance in rangelands with increasing slope, where vegetation cover obstructs run-off and decreases evaporation from the soil. Overgrazing can influence these positive feedback mechanisms. In this study, we first show that model predictions of cover and productivity of the vegetation types are realistic by comparing them with estimates obtained from field surveys. Then, we apply a realistic range in slope angle combined with two land use regimes (light versus heavy grazing intensity). Our simulation results reveal that hydrological processes and associated productivity are strongly affected by slope, whereas the magnitude of this impact depends on overgrazing. Under low stocking rates, undisturbed vegetation is maintained and run-off and evaporation remain low on flat plains and gentle slope. On steep slopes, run-off and evaporation become larger, while water retention potential decreases, which leads to reduced productivity. Overgrazing, however, reduces vegetation cover and biomass production and the landscape"s ability to conserve water decreases even on flat plains and gentle slopes. Generally, the abundance of perennial grasses and shrubs decreases with increasing slope and grazing. Dominance is shifted towards shrubs and annuals. As a management recommendation we suggest that different vegetation growth forms should not only be regarded as forage producers but also as regulators of ecosystem functioning. Particularly on sloping range lands, a high percentage of cover by perennial vegetation insures that water is retained in the system. Y1 - 2009 UR - http://www.sciencedirect.com/science/journal/14391791 U6 - https://doi.org/10.1016/j.baae.2008.06.002 SN - 1439-1791 ER - TY - CHAP A1 - Popp, Alexander A1 - Blaum, Niels A1 - Domptail, Stephanie A1 - Herpel, Nicole A1 - Gröngröft, Alexander A1 - Hoffman, T. T. A1 - Jürgens, Norbert A1 - Milton, Sue A1 - Nuppenau, Ernst-August A1 - Rossmanith, Eva A1 - Schmidt, Michael A1 - Vogel, Melanie A1 - Vohland, Katrin A1 - Jeltsch, Florian T1 - From satellite imagery to soil-plant interactions BT - integrating disciplines and scales in process based simulation models N2 - Decisions for the conservation of biodiversity and sustainable management of natural resources are typically related to large scales, i.e. the landscape level. However, understanding and predicting the effects of land use and climate change on scales relevant for decision-making requires to include both, large scale vegetation dynamics and small scale processes, such as soil-plant interactions. Integrating the results of multiple BIOTA subprojects enabled us to include necessary data of soil science, botany, socio-economics and remote sensing into a high resolution, process-based and spatially-explicit model. Using an example from a sustainably-used research farm and a communally used and degraded farming area in semiarid southern Namibia we show the power of simulation models as a tool to integrate processes across disciplines and scales. Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-7302 N1 - Interdisziplinäres Zentrum für Musterdynamik und Angewandte Fernerkundung Workshop vom 9. - 10. Februar 2006. [Poster] ER - TY - THES A1 - Popp, Alexander T1 - An integrated modelling approach for sustainable management of semi-arid and arid rangelands T1 - Ein integrativer Modellierungsansatz für ein nachhaltiges Management semi-arider und arider Beweidungsgebiete N2 - The need to develop sustainable resource management strategies for semi-arid and arid rangelands is acute as non-adapted grazing strategies lead to irreversible environmental problems such as desertification and associated loss of economic support to society. In such vulnerable ecosystems, successful implementation of sustainable management strategies depends on well-founded under-standing of processes at different scales that underlay the complex system dynamic. There is ample evidence that, in contrast to traditional sectoral approaches, only interdisciplinary research does work for resolving problems in conservation and natural resource management. In this thesis I combined a range of modeling approaches that integrate different disciplines and spatial scales in order to contribute to basic guidelines for sustainable management of semi-arid and arid range-lands. Since water availability and livestock management are seen as most potent determinants for the dynamics of semi-arid and arid ecosystems I focused on (i) the interaction of ecological and hydro-logical processes and (ii) the effect of farming strategies. First, I developed a grid-based and small-scaled model simulating vegetation dynamics and inter-linked hydrological processes. The simulation results suggest that ecohydrological interactions gain importance in rangelands with ascending slope where vegetation cover serves to obstruct run-off and decreases evaporation from the soil. Disturbances like overgrazing influence these positive feedback mechanisms by affecting vegetation cover and composition. In the second part, I present a modeling approach that has the power to transfer and integrate ecological information from the small scale vegetation model to the landscape scale, most relevant for the conservation of biodiversity and sustainable management of natural resources. I combined techniques of stochastic modeling with remotely sensed data and GIS to investigate to which ex-tent spatial interactions, like the movement of surface water by run-off in water limited environments, affect ecosystem functioning at the landscape scale. My simulation experiments show that overgrazing decreases the number of vegetation patches that act as hydrological sinks and run-off increases. The results of both simulation models implicate that different vegetation types should not only be regarded as provider of forage production but also as regulator of ecosystem functioning. Vegetation patches with good cover of perennial vegetation are capable to catch and conserve surface run-off from degraded surrounding areas. Therefore, downstream out of the simulated system is prevented and efficient use of water resources is guaranteed at all times. This consequence also applies to commercial rotational grazing strategies for semi-arid and arid rangelands with ascending slope where non-degraded paddocks act as hydrological sinks. Finally, by the help of an integrated ecological-economic modeling approach, I analyzed the relevance of farmers’ ecological knowledge for longterm functioning of semi-arid and arid grazing systems under current and future climatic conditions. The modeling approach consists of an ecological and an economic module and combines relevant processes on either level. Again, vegetation dynamics and forage productivity is derived by the small-scaled vegetation model. I showed that sustainable management of semi-arid and arid rangelands relies strongly on the farmers’ knowledge on how the ecosystem works. Furthermore, my simulation results indicate that the projected lower annual rainfall due to climate change in combination with non-adapted grazing strategies adds an additional layer of risk to these ecosystems that are already prone to land degradation. All simulation models focus on the most essential factors and ignore specific details. Therefore, even though all simulation models are parameterized for a specific dwarf shrub savanna in arid southern Namibia, the conclusions drawn are applicable for semi-arid and arid rangelands in general. N2 - Nachhaltige Managementstrategien für semi-aride und aride Beweidungsgebiete sind äusserst bedeutend, da ein nicht nachhaltiges Management sehr schnell zu irreversiblen Umweltproblemen und damit verbundenem Verlust der ökonomischen Prosperität führt. Obwohl Wasserverfügbarkeit und Viehmanagement als die bedeutendsten Faktoren für die Dynamik semi-arider und arider Ökosysteme angesehen werden, ist deren Einfluss und Interaktion nicht genügend erforscht. Ziel der Dissertation war, das Wissen über diese Prozesse zu erweitern, um grundsätzliche Richtlinien für die nachhaltige Nutzung semi-arider und arider Beweidungsgebiete zu erstellen. Hierfür habe ich in dieser Arbeit, die aus drei aufeinander aufbauenden Teilen besteht, mehrere Modellierungstechniken kombiniert. Für den ersten Teil meiner Arbeit habe ich ein gitterbasiertes und kleinskaliges Modell entwickelt, welches die Vegetationsdynamik und damit verbundene hydrologische Prozesse wie Oberflächenabfluss und Evaporation simuliert. Da Entscheidungen zur nachhaltigen Nutzung von Resourcen auf der Landschaftsebene getroffen werden, stelle ich im zweiten Teil der Arbeit eine neue Methode vor, mit deren Hilfe man diese kleinskaligen ökologischen Informationen auf die Landschaftsebene übertragen kann. Um zu untersuchen wie Oberflächenabfluss das Funktionieren von Ökosystemen auf Landschaftsebene beeinflusst, habe ich Techniken der stochastischen Modellierung mit Techniken der Fernerkundung und GIS kombiniert.. Die Ergebnisse beider Simulationsmodelle implizieren, dass öko-hydrologische Interaktionen in Beweidungsgebieten mit ausgeprägter Topographie von Bedeutung sind. Verschiedene Vegetationstypen sollten nicht nur als Futterquelle für die Weidetiere betrachtet werden, sondern auch bezüglich ihrer Bedeutung als Regler der Ökosystemfunktion. Vegetationsbestände mit einem hohen Bedeckungsgrad an perennierender Vegetation können Oberflächenabfluss aus degradierten benachbarten Gebieten abfangen. Störungen wie Überweidung beeinflussen diesen positiven Rückkopplungsmechanismus negativ, indem sie Vegetationsbedeckung und -zusammensetzung verändern. Im letzten Teil der Arbeit habe ich mit Hilfe eines ökologisch-ökonomischen Simulationsmodells die Bedeutung des ökologischen Verständnisses der Farmer für ein langfristiges Funktionieren von semi-ariden und ariden Beweidungssystemen unter aktuellen und prognostizierten klimatischen Bedingungen untersucht. Auch hier wird die Vegetationsdynamik und – produktivität beider Module mit Hilfe des kleinskaligen Vegetationsmodells abgeleitet. Die Ergebnisse zeigen, dass ein nachhaltiges Management semi-arider und arider Savannen sehr stark vom Verständnis der Farmer für die Funktionsweise des Ökosystems abhängt. Des Weiteren weist das Modell darauf hin, dass ein durch den prognostizierten Klimawandel reduzierter Jahresniederschlag in Kombination mit nicht-angepassten Beweidungsstrategien ein hohes Risiko für diese Ökosysteme darstellt. Meine Arbeit trägt zu einem besseren Verständnis grundlegender Prozesse der Ökosystemdynamik einer ariden Zwergstrauchsavanne im südlichen Namibia bei. Da sich alle drei Simulationsmodelle auf grundlegende Faktoren konzentrieren und spezifische Details ignorieren, können die Schlussfolgerungen auch auf andere semi-aride und aride Beweidungsgebiete übertragen werden. KW - Simulationsmodell KW - nachhaltige Landnutzung KW - Klimawandel KW - arid KW - simulation model KW - sustainable management KW - climate change KW - arid Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-15103 ER - TY - JOUR A1 - Merfort, Leon A1 - Bauer, Nico A1 - Humpenöder, Florian A1 - Klein, David A1 - Strefler, Jessica A1 - Popp, Alexander A1 - Luderer, Gunnar A1 - Kriegler, Elmar T1 - Bioenergy-induced land-use-change emissions with sectorally fragmented policies JF - Nature climate change N2 - Controlling bioenergy-induced land-use-change emissions is key to exploiting bioenergy for climate change mitigation. However, the effect of different land-use and energy sector policies on specific bioenergy emissions has not been studied so far. Using the global integrated assessment model REMIND-MAgPIE, we derive a biofuel emission factor (EF) for different policy frameworks. We find that a uniform price on emissions from both sectors keeps biofuel emissions at 12 kg CO2 GJ−1. However, without land-use regulation, the EF increases substantially (64 kg CO2 GJ−1 over 80 years, 92 kg CO2 GJ−1 over 30 years). We also find that comprehensive coverage (>90%) of carbon-rich land areas worldwide is key to containing land-use emissions. Pricing emissions indirectly on the level of bioenergy consumption reduces total emissions by cutting bioenergy demand but fails to reduce the average EF. In the absence of comprehensive and timely land-use regulation, bioenergy thus may contribute less to climate change mitigation than assumed previously. KW - agriculture KW - climate-change mitigation KW - energy policy KW - energy supply and demand KW - environmental economics Y1 - 2023 U6 - https://doi.org/10.1038/s41558-023-01697-2 SN - 1758-678X SN - 1758-6798 VL - 13 IS - 7 SP - 685 EP - 692 PB - Nature Publ. Group CY - London ER -