TY - JOUR A1 - Moule, Adam J. A1 - Neher, Dieter A1 - Turner, Sarah T. ED - Ludwigs, S T1 - P3HT-Based solar cells: structural properties and photovoltaic performance JF - Advances in Polymer Science JF - Advances in Polymer Science N2 - Each year we are bombarded with B.Sc. and Ph.D. applications from students that want to improve the world. They have learned that their future depends on changing the type of fuel we use and that solar energy is our future. The hope and energy of these young people will transform future energy technologies, but it will not happen quickly. Organic photovoltaic devices are easy to sketch, but the materials, processing steps, and ways of measuring the properties of the materials are very complicated. It is not trivial to make a systematic measurement that will change the way other research groups think or practice. In approaching this chapter, we thought about what a new researcher would need to know about organic photovoltaic devices and materials in order to have a good start in the subject. Then, we simplified that to focus on what a new researcher would need to know about poly-3-hexylthiophene: phenyl-C61-butyric acid methyl ester blends (P3HT: PCBM) to make research progress with these materials. This chapter is by no means authoritative or a compendium of all things on P3HT: PCBM. We have selected to explain how the sample fabrication techniques lead to control of morphology and structural features and how these morphological features have specific optical and electronic consequences for organic photovoltaic device applications. KW - Free carrier generation KW - Non-geminate recombination KW - Organic solar cells Y1 - 2014 SN - 978-3-662-45145-8; 978-3-662-45144-1 U6 - https://doi.org/10.1007/12_2014_289 SN - 0065-3195 VL - 265 SP - 181 EP - 232 PB - Springer CY - Berlin ER - TY - JOUR A1 - Albrecht, Steve A1 - Grootoonk, Bjorn A1 - Neubert, Sebastian A1 - Roland, Steffen A1 - Wordenweber, Jan A1 - Meier, Matthias A1 - Schlatmann, Rutger A1 - Gordijn, Aad A1 - Neher, Dieter T1 - Efficient hybrid inorganic/organic tandem solar cells with tailored recombination contacts JF - Solar energy materials & solar cells : an international journal devoted to photovoltaic, photothermal, and photochemical solar energy conversion N2 - In this work, the authors present a 7.5% efficient hybrid tandem solar cell with the bottom cell made of amorphous silicon and a Si-PCPDTBT:PC70BM bulk heterojunction top cell. Loss-free recombination contacts were realized by combing Al-doped ZnO with either the conducting polymer composite PEDOT:PSS or with a bilayer of ultrathin Al and MoO3. Optimization of these contacts results in tandem cells with high fill factors of 70% and an open circuit voltage close to the sum of those of the sub-cells. This is the best efficiency reported for this type of hybrid tandem cell so far. Optical and electrical device modeling suggests that the efficiency can be increased to similar to 12% on combining a donor polymer with suitable absorption onset with PCBM. We also describe proof-of-principle studies employing light trapping in hybrid tandem solar cells, suggesting that this device architecture has the potential to achieve efficiencies well above 12%. (C) 2014 Elsevier B.V. All rights reserved. KW - Hybrid solar cells KW - Tandem solar cells KW - Organic solar cells KW - Bulk heterojunction KW - Efficiency optimization Y1 - 2014 U6 - https://doi.org/10.1016/j.solmat.2014.04.020 SN - 0927-0248 SN - 1879-3398 VL - 127 SP - 157 EP - 162 PB - Elsevier CY - Amsterdam ER -