TY - JOUR A1 - Myachykov, Andriy A1 - Cangelosi, Angelo A1 - Ellis, Rob A1 - Fischer, Martin H. T1 - The oculomotor resonance effect in spatial-numerical mapping JF - Acta psychologica : international journal of psychonomics N2 - We investigated automatic Spatial-Numerical Association of Response Codes (SNARC) effect in auditory number processing. Two experiments continually measured spatial characteristics of ocular drift at central fixation during and after auditory number presentation. Consistent with the notion of a spatially oriented mental number line, we found spontaneous magnitude-dependent gaze adjustments, both with and without a concurrent saccadic task. This fixation adjustment (1) had a small-number/left-lateralized bias and (2) it was biphasic as it emerged for a short time around the point of lexical access and it received later robust representation around following number onset. This pattern suggests a two-step mechanism of sensorimotor mapping between numbers and space a first-pass bottom-up activation followed by a top-down and more robust horizontal SNARC Our results inform theories of number processing as well as simulation-based approaches to cognition by identifying the characteristics of an oculomotor resonance phenomenon. (C) 2015 Elsevier B.V. All rights reserved. KW - Attention KW - Embodied cognition KW - Eye movements KW - Oculomotor resonance KW - Ocular drift KW - SNARC Y1 - 2015 U6 - https://doi.org/10.1016/j.actpsy.2015.09.006 SN - 0001-6918 SN - 1873-6297 VL - 161 SP - 162 EP - 169 PB - Elsevier CY - Amsterdam ER - TY - GEN A1 - Fischer, Martin H. A1 - Winter, Bodo A1 - Felisatti, Arianna A1 - Myachykov, Andriy A1 - Jeglinski-Mende, Melinda A. A1 - Shaki, Samuel T1 - More Instructions Make Fewer Subtractions T2 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Research on problem solving offers insights into how humans process task-related information and which strategies they use (Newell and Simon, 1972; Öllinger et al., 2014). Problem solving can be defined as the search for possible changes in one's mind (Kahneman, 2003). In a recent study, Adams et al. (2021) assessed whether the predominant problem solving strategy when making changes involves adding or subtracting elements. In order to do this, they used several examples of simple problems, such as editing text or making visual patterns symmetrical, either in naturalistic settings or on-line. The essence of the authors' findings is a strong preference to add rather than subtract elements across a diverse range of problems, including the stabilizing of artifacts, creating symmetrical patterns, or editing texts. More specifically, they succeeded in demonstrating that “participants were less likely to identify advantageous subtractive changes when the task did not (vs. did) cue them to consider subtraction, when they had only one opportunity (vs. several) to recognize the shortcomings of an additive search strategy or when they were under a higher (vs. lower) cognitive load” (Adams et al., 2021, p. 258). Addition and subtraction are generally defined as de-contextualized mathematical operations using abstract symbols (Russell, 1903/1938). Nevertheless, understanding of both symbols and operations is informed by everyday activities, such as making or breaking objects (Lakoff and Núñez, 2000; Fischer and Shaki, 2018). The universal attribution of “addition bias” or “subtraction neglect” to problem solving activities is perhaps a convenient shorthand but it overlooks influential framing effects beyond those already acknowledged in the report and the accompanying commentary (Meyvis and Yoon, 2021). Most importantly, while Adams et al.'s study addresses an important issue, their very method of verbally instructing participants, together with lack of control over several known biases, might render their findings less than conclusive. Below, we discuss our concerns that emerged from the identified biases, namely those regarding the instructions and the experimental materials. Moreover, we refer to research from mathematical cognition that provides new insights into Adams et al.'s findings. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 763 KW - problem solving KW - addition KW - subtraction KW - cognitive bias KW - SNARC Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-550086 SN - 1866-8364 VL - 12 SP - 1 EP - 3 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - JOUR A1 - Fischer, Martin H. A1 - Winter, Bodo A1 - Felisatti, Arianna A1 - Myachykov, Andriy A1 - Jeglinski-Mende, Melinda A. A1 - Shaki, Samuel T1 - More instructions make fewer subtractions JF - Frontiers in psychology / Frontiers Research Foundation N2 - Research on problem solving offers insights into how humans process task-related information and which strategies they use (Newell and Simon, 1972; Öllinger et al., 2014). Problem solving can be defined as the search for possible changes in one's mind (Kahneman, 2003). In a recent study, Adams et al. (2021) assessed whether the predominant problem solving strategy when making changes involves adding or subtracting elements. In order to do this, they used several examples of simple problems, such as editing text or making visual patterns symmetrical, either in naturalistic settings or on-line. The essence of the authors' findings is a strong preference to add rather than subtract elements across a diverse range of problems, including the stabilizing of artifacts, creating symmetrical patterns, or editing texts. More specifically, they succeeded in demonstrating that “participants were less likely to identify advantageous subtractive changes when the task did not (vs. did) cue them to consider subtraction, when they had only one opportunity (vs. several) to recognize the shortcomings of an additive search strategy or when they were under a higher (vs. lower) cognitive load” (Adams et al., 2021, p. 258). Addition and subtraction are generally defined as de-contextualized mathematical operations using abstract symbols (Russell, 1903/1938). Nevertheless, understanding of both symbols and operations is informed by everyday activities, such as making or breaking objects (Lakoff and Núñez, 2000; Fischer and Shaki, 2018). The universal attribution of “addition bias” or “subtraction neglect” to problem solving activities is perhaps a convenient shorthand but it overlooks influential framing effects beyond those already acknowledged in the report and the accompanying commentary (Meyvis and Yoon, 2021). Most importantly, while Adams et al.'s study addresses an important issue, their very method of verbally instructing participants, together with lack of control over several known biases, might render their findings less than conclusive. Below, we discuss our concerns that emerged from the identified biases, namely those regarding the instructions and the experimental materials. Moreover, we refer to research from mathematical cognition that provides new insights into Adams et al.'s findings. KW - problem solving KW - addition KW - subtraction KW - cognitive bias KW - SNARC Y1 - 2021 U6 - https://doi.org/10.3389/fpsyg.2021.720616 SN - 1664-1078 VL - 12 SP - 1 EP - 3 PB - Frontiers Research Foundation CY - Lausanne, Schweiz ER -