TY - JOUR A1 - Penone, Caterina A1 - Allan, Eric A1 - Soliveres, Santiago A1 - Felipe-Lucia, Maria R. A1 - Gossner, Martin M. A1 - Seibold, Sebastian A1 - Simons, Nadja K. A1 - Schall, Peter A1 - van der Plas, Fons A1 - Manning, Peter A1 - Manzanedo, Ruben D. A1 - Boch, Steffen A1 - Prati, Daniel A1 - Ammer, Christian A1 - Bauhus, Juergen A1 - Buscot, Francois A1 - Ehbrecht, Martin A1 - Goldmann, Kezia A1 - Jung, Kirsten A1 - Mueller, Joerg A1 - Mueller, Joerg C. A1 - Pena, Rodica A1 - Polle, Andrea A1 - Renner, Swen C. A1 - Ruess, Liliane A1 - Schoenig, Ingo A1 - Schrumpf, Marion A1 - Solly, Emily F. A1 - Tschapka, Marco A1 - Weisser, Wolfgang W. A1 - Wubet, Tesfaye A1 - Fischer, Markus T1 - Specialisation and diversity of multiple trophic groups are promoted by different forest features JF - Ecology letters N2 - While forest management strongly influences biodiversity, it remains unclear how the structural and compositional changes caused by management affect different community dimensions (e.g. richness, specialisation, abundance or completeness) and how this differs between taxa. We assessed the effects of nine forest features (representing stand structure, heterogeneity and tree composition) on thirteen above- and belowground trophic groups of plants, animals, fungi and bacteria in 150 temperate forest plots differing in their management type. Canopy cover decreased light resources, which increased community specialisation but reduced overall diversity and abundance. Features increasing resource types and diversifying microhabitats (admixing of oaks and conifers) were important and mostly affected richness. Belowground groups responded differently to those aboveground and had weaker responses to most forest features. Our results show that we need to consider forest features rather than broad management types and highlight the importance of considering several groups and community dimensions to better inform conservation. KW - biodiversity exploratories KW - dark diversity KW - forest management KW - global change KW - land-use KW - multidiversity KW - specialisation KW - temperate forests Y1 - 2018 U6 - https://doi.org/10.1111/ele.13182 SN - 1461-023X SN - 1461-0248 VL - 22 IS - 1 SP - 170 EP - 180 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Heinrichs, Steffi A1 - Ammer, Christian A1 - Mund, Martina A1 - Boch, Steffen A1 - Budde, Sabine A1 - Fischer, Markus A1 - Mueller, Joerg A1 - Schoening, Ingo A1 - Schulze, Ernst-Detlef A1 - Schmidt, Wolfgang A1 - Weckesser, Martin A1 - Schall, Peter T1 - Landscape-Scale Mixtures of Tree Species are More Effective than Stand-Scale Mixtures for Biodiversity of Vascular Plants, Bryophytes and Lichens JF - Forests N2 - Tree species diversity can positively affect the multifunctionality of forests. This is why conifer monocultures of Scots pine and Norway spruce, widely promoted in Central Europe since the 18th and 19th century, are currently converted into mixed stands with naturally dominant European beech. Biodiversity is expected to benefit from these mixtures compared to pure conifer stands due to increased abiotic and biotic resource heterogeneity. Evidence for this assumption is, however, largely lacking. Here, we investigated the diversity of vascular plants, bryophytes and lichens at the plot (alpha diversity) and at the landscape (gamma diversity) level in pure and mixed stands of European beech and conifer species (Scots pine, Norway spruce, Douglas fir) in four regions in Germany. We aimed to identify compositions of pure and mixed stands in a hypothetical forest landscape that can optimize gamma diversity of vascular plants, bryophytes and lichens within regions. Results show that gamma diversity of the investigated groups is highest when a landscape comprises different pure stands rather than tree species mixtures at the stand scale. Species mainly associated with conifers rely on light regimes that are only provided in pure conifer forests, whereas mixtures of beech and conifers are more similar to beech stands. Combining pure beech and pure conifer stands at the landscape scale can increase landscape level biodiversity and conserve species assemblages of both stand types, while landscapes solely composed of stand scale tree species mixtures could lead to a biodiversity reduction of a combination of investigated groups of 7 up to 20%. KW - Fagus sylvatica KW - Pinus sylvestris KW - Picea abies KW - Pseudotsuga menziesii KW - forest management KW - tree species diversity KW - forest conversion KW - gamma diversity KW - landscape scale KW - Biodiversity Exploratories Y1 - 2019 U6 - https://doi.org/10.3390/f10010073 SN - 1999-4907 VL - 10 IS - 1 PB - MDPI CY - Basel ER - TY - JOUR A1 - Soliveres, Santiago A1 - Manning, Peter A1 - Prati, Daniel A1 - Gossner, Martin M. A1 - Alt, Fabian A1 - Arndt, Hartmut A1 - Baumgartner, Vanessa A1 - Binkenstein, Julia A1 - Birkhofer, Klaus A1 - Blaser, Stefan A1 - Bluethgen, Nico A1 - Boch, Steffen A1 - Boehm, Stefan A1 - Boerschig, Carmen A1 - Buscot, Francois A1 - Diekoetter, Tim A1 - Heinze, Johannes A1 - Hoelzel, Norbert A1 - Jung, Kirsten A1 - Klaus, Valentin H. A1 - Klein, Alexandra-Maria A1 - Kleinebecker, Till A1 - Klemmer, Sandra A1 - Krauss, Jochen A1 - Lange, Markus A1 - Morris, E. Kathryn A1 - Mueller, Joerg A1 - Oelmann, Yvonne A1 - Overmann, Jörg A1 - Pasalic, Esther A1 - Renner, Swen C. A1 - Rillig, Matthias C. A1 - Schaefer, H. Martin A1 - Schloter, Michael A1 - Schmitt, Barbara A1 - Schoening, Ingo A1 - Schrumpf, Marion A1 - Sikorski, Johannes A1 - Socher, Stephanie A. A1 - Solly, Emily F. A1 - Sonnemann, Ilja A1 - Sorkau, Elisabeth A1 - Steckel, Juliane A1 - Steffan-Dewenter, Ingolf A1 - Stempfhuber, Barbara A1 - Tschapka, Marco A1 - Tuerke, Manfred A1 - Venter, Paul A1 - Weiner, Christiane N. A1 - Weisser, Wolfgang W. A1 - Werner, Michael A1 - Westphal, Catrin A1 - Wilcke, Wolfgang A1 - Wolters, Volkmar A1 - Wubet, Tesfaye A1 - Wurst, Susanne A1 - Fischer, Markus A1 - Allan, Eric T1 - Locally rare species influence grassland ecosystem multifunctionality JF - Philosophical transactions of the Royal Society of London : B, Biological sciences N2 - Species diversity promotes the delivery of multiple ecosystem functions (multifunctionality). However, the relative functional importance of rare and common species in driving the biodiversity multifunctionality relationship remains unknown. We studied the relationship between the diversity of rare and common species (according to their local abundances and across nine different trophic groups), and multifunctionality indices derived from 14 ecosystem functions on 150 grasslands across a land use intensity (LUI) gradient. The diversity of above- and below-ground rare species had opposite effects, with rare above-ground species being associated with high levels of multifunctionality, probably because their effects on different functions did not trade off against each other. Conversely, common species were only related to average, not high, levels of multifunctionality, and their functional effects declined with LUI. Apart from the community level effects of diversity, we found significant positive associations between the abundance of individual species and multifunctionality in 6% of the species tested. Species specific functional effects were best predicted by their response to LUI: species that declined in abundance with land use intensification were those associated with higher levels of multifunctionality. Our results highlight the importance of rare species for ecosystem multifunctionality and help guiding future conservation priorities. KW - biodiversity KW - common species KW - ecosystem function KW - identity hypothesis KW - land use KW - multitrophic Y1 - 2016 U6 - https://doi.org/10.1098/rstb.2015.0269 SN - 0962-8436 SN - 1471-2970 VL - 371 SP - 3175 EP - 3185 PB - Royal Society CY - London ER - TY - JOUR A1 - Martin, Edith Andrea A1 - Heurich, Marco A1 - Mueller, Joerg A1 - Bufka, Ludek A1 - Bubliy, Oleg A1 - Fickel, Jörns T1 - Genetic variability and size estimates of the Eurasian otter (Lutra lutra) population in the Bohemian Forest Ecosystem JF - Mammalian biology = Zeitschrift für Säugetierkunde N2 - Even though recent years have shown a slow recovery of the Eurasian otter (Lutra lutra) populations from their previous lows, the species is still highly endangered in most parts of its European distribution range. Surprisingly, only a few studies have so far assessed the species’ genetic variability and population density, and they have mostly been carried out only in small territories. In Germany, most otter populations live in protected areas whose management urgently needs data on population sizes and densities as well as on genetic variability of the species under their custody. Thus, we analyzed genetic variability and assessed size and density of the otter population in the Bohemian Forest Ecosystem, an area that had not been included in the few previous molecular studies. The study area comprised of 1500 km2, divided into fifteen squares of 10 × 10 km2, each of which was sampled in two collection periods. Overall we collected 261 fecal samples (spraints), of which 60 (23%) could be genotyped at least at eight microsatellite loci, yielding 38 distinct otter genotypes. The low genotyping success rate was the result of high ambient temperature at the time of sampling rather than that of high humidity. The population did not show signs of a past bottleneck, indicating a small yet stable population size. Population size was estimated to be 118 (CI95% 64–163) individuals, with a mean density of 1 animal per 8.5 km2 or 3.1 km river length. Our results imply that hunting, requested by local fishpond owners, should remain banned to avoid a decline in (effective) population size. KW - Eurasian otter KW - Bohemian forest ecosystem Y1 - 2017 U6 - https://doi.org/10.1016/j.mambio.2016.12.001 SN - 1616-5047 SN - 1618-1476 VL - 86 SP - 42 EP - 47 PB - Elsevier CY - Jena ER -