TY - GEN A1 - Chechkin, Aleksei V. A1 - Zaid, Irwin M. A1 - Lomholt, Michael A. A1 - Sokolov, Igor M. A1 - Metzler, Ralf T1 - Bulk-mediated surface diffusion on a cylinder in the fast exchange limit T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - In various biological systems and small scale technological applications particles transiently bind to a cylindrical surface. Upon unbinding the particles diffuse in the vicinal bulk before rebinding to the surface. Such bulk-mediated excursions give rise to an effective surface translation, for which we here derive and discuss the dynamic equations, including additional surface diffusion. We discuss the time evolution of the number of surface-bound particles, the effective surface mean squared displacement, and the surface propagator. In particular, we observe sub- and superdiffusive regimes. A plateau of the surface mean-squared displacement reflects a stalling of the surface diffusion at longer times. Finally, the corresponding first passage problem for the cylindrical geometry is analysed. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 593 KW - Bulk-mediated diffusion; KW - anomalous diffusion KW - Levy flights KW - stochastic processes Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-415480 SN - 1866-8372 IS - 593 SP - 114 EP - 126 ER - TY - JOUR A1 - Chechkin, Aleksei V. A1 - Zaid, Irwin M. A1 - Lomholt, Michael A. A1 - Sokolov, Igor M. A1 - Metzler, Ralf T1 - Bulk-mediated diffusion on a planar surface full solution JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - We consider the effective surface motion of a particle that intermittently unbinds from a planar surface and performs bulk excursions. Based on a random-walk approach, we derive the diffusion equations for surface and bulk diffusion including the surface-bulk coupling. From these exact dynamic equations, we analytically obtain the propagator of the effective surface motion. This approach allows us to deduce a superdiffusive, Cauchy-type behavior on the surface, together with exact cutoffs limiting the Cauchy form. Moreover, we study the long-time dynamics for the surface motion. Y1 - 2012 U6 - https://doi.org/10.1103/PhysRevE.86.041101 SN - 1539-3755 VL - 86 IS - 4 PB - American Physical Society CY - College Park ER -