TY - JOUR A1 - Molina-Garcia, Daniel A1 - Sandev, Trifce A1 - Safdari, Hadiseh A1 - Pagnini, Gianni A1 - Chechkin, Aleksei V. A1 - Metzler, Ralf T1 - Crossover from anomalous to normal diffusion BT - truncated power-law noise correlations and applications to dynamics in lipid bilayers JF - New Journal of Physics N2 - Abstract The emerging diffusive dynamics in many complex systems show a characteristic crossover behaviour from anomalous to normal diffusion which is otherwise fitted by two independent power-laws. A prominent example for a subdiffusive–diffusive crossover are viscoelastic systems such as lipid bilayer membranes, while superdiffusive–diffusive crossovers occur in systems of actively moving biological cells. We here consider the general dynamics of a stochastic particle driven by so-called tempered fractional Gaussian noise, that is noise with Gaussian amplitude and power-law correlations, which are cut off at some mesoscopic time scale. Concretely we consider such noise with built-in exponential or power-law tempering, driving an overdamped Langevin equation (fractional Brownian motion) and fractional Langevin equation motion. We derive explicit expressions for the mean squared displacement and correlation functions, including different shapes of the crossover behaviour depending on the concrete tempering, and discuss the physical meaning of the tempering. In the case of power-law tempering we also find a crossover behaviour from faster to slower superdiffusion and slower to faster subdiffusion. As a direct application of our model we demonstrate that the obtained dynamics quantitatively describes the subdiffusion–diffusion and subdiffusion–subdiffusion crossover in lipid bilayer systems. We also show that a model of tempered fractional Brownian motion recently proposed by Sabzikar and Meerschaert leads to physically very different behaviour with a seemingly paradoxical ballistic long time scaling. KW - anomalous diffusion KW - truncated power-law correlated noise KW - lipid bilayer membrane dynamics Y1 - 2018 U6 - https://doi.org/10.1088/1367-2630/aae4b2 SN - 1367-2630 VL - 20 PB - IOP Publishing Ltd CY - London und Bad Honnef ER - TY - JOUR A1 - Padash, Amin A1 - Sandev, Trifce A1 - Kantz, Holger A1 - Metzler, Ralf A1 - Chechkin, Aleksei T1 - Asymmetric Levy flights are more efficient in random search JF - Fractal and fractional N2 - We study the first-arrival (first-hitting) dynamics and efficiency of a one-dimensional random search model performing asymmetric Levy flights by leveraging the Fokker-Planck equation with a delta-sink and an asymmetric space-fractional derivative operator with stable index alpha and asymmetry (skewness) parameter beta. We find exact analytical results for the probability density of first-arrival times and the search efficiency, and we analyse their behaviour within the limits of short and long times. We find that when the starting point of the searcher is to the right of the target, random search by Brownian motion is more efficient than Levy flights with beta <= 0 (with a rightward bias) for short initial distances, while for beta>0 (with a leftward bias) Levy flights with alpha -> 1 are more efficient. When increasing the initial distance of the searcher to the target, Levy flight search (except for alpha=1 with beta=0) is more efficient than the Brownian search. Moreover, the asymmetry in jumps leads to essentially higher efficiency of the Levy search compared to symmetric Levy flights at both short and long distances, and the effect is more pronounced for stable indices alpha close to unity. KW - asymmetric Levy flights KW - first-arrival density KW - search efficiency Y1 - 2022 U6 - https://doi.org/10.3390/fractalfract6050260 SN - 2504-3110 VL - 6 IS - 5 PB - MDPI CY - Basel ER - TY - JOUR A1 - Tomovski, Zivorad A1 - Sandev, Trifce A1 - Metzler, Ralf A1 - Dubbeldam, Johan T1 - Generalized space-time fractional diffusion equation with composite fractional time derivative JF - Physica : europhysics journal ; A, Statistical mechanics and its applications N2 - We investigate the solution of space-time fractional diffusion equations with a generalized Riemann-Liouville time fractional derivative and Riesz-Feller space fractional derivative. The Laplace and Fourier transform methods are applied to solve the proposed fractional diffusion equation. The results are represented by using the Mittag-Leffler functions and the Fox H-function. Special cases of the initial and boundary conditions are considered. Numerical scheme and Grunwald-Letnikov approximation are also used to solve the space-time fractional diffusion equation. The fractional moments of the fundamental solution of the considered space-time fractional diffusion equation are obtained. Many known results are special cases of those obtained in this paper. We investigate also the solution of a space-time fractional diffusion equations with a singular term of the form delta(x). t-beta/Gamma(1-beta) (beta > 0). KW - Fractional diffusion equation KW - Composite fractional derivative KW - Riesz-Feller fractional derivative KW - Mittag-Leffler functions KW - Fox H-function KW - Fractional moments KW - Asymptotic expansions KW - Grunwald-Letnikov approximation Y1 - 2012 U6 - https://doi.org/10.1016/j.physa.2011.12.035 SN - 0378-4371 SN - 1873-2119 VL - 391 IS - 8 SP - 2527 EP - 2542 PB - Elsevier CY - Amsterdam ER - TY - GEN A1 - Molina-Garcia, Daniel A1 - Sandev, Trifce A1 - Safdari, Hadiseh A1 - Pagnini, Gianni A1 - Chechkin, Aleksei V. A1 - Metzler, Ralf T1 - Crossover from anomalous to normal diffusion BT - truncated power-law noise correlations and applications to dynamics in lipid bilayers T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Abstract The emerging diffusive dynamics in many complex systems show a characteristic crossover behaviour from anomalous to normal diffusion which is otherwise fitted by two independent power-laws. A prominent example for a subdiffusive–diffusive crossover are viscoelastic systems such as lipid bilayer membranes, while superdiffusive–diffusive crossovers occur in systems of actively moving biological cells. We here consider the general dynamics of a stochastic particle driven by so-called tempered fractional Gaussian noise, that is noise with Gaussian amplitude and power-law correlations, which are cut off at some mesoscopic time scale. Concretely we consider such noise with built-in exponential or power-law tempering, driving an overdamped Langevin equation (fractional Brownian motion) and fractional Langevin equation motion. We derive explicit expressions for the mean squared displacement and correlation functions, including different shapes of the crossover behaviour depending on the concrete tempering, and discuss the physical meaning of the tempering. In the case of power-law tempering we also find a crossover behaviour from faster to slower superdiffusion and slower to faster subdiffusion. As a direct application of our model we demonstrate that the obtained dynamics quantitatively describes the subdiffusion–diffusion and subdiffusion–subdiffusion crossover in lipid bilayer systems. We also show that a model of tempered fractional Brownian motion recently proposed by Sabzikar and Meerschaert leads to physically very different behaviour with a seemingly paradoxical ballistic long time scaling. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 507 KW - anomalous diffusion KW - truncated power-law correlated noise KW - lipid bilayer membrane dynamics Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-422590 SN - 1866-8372 IS - 507 ER - TY - JOUR A1 - Sandev, Trifce A1 - Sokolov, Igor M. A1 - Metzler, Ralf A1 - Chechkin, Aleksei V. T1 - Beyond monofractional kinetics JF - Chaos, solitons & fractals : applications in science and engineering ; an interdisciplinary journal of nonlinear science N2 - We discuss generalized integro-differential diffusion equations whose integral kernels are not of a simple power law form, and thus these equations themselves do not belong to the family of fractional diffusion equations exhibiting a monoscaling behavior. They instead generate a broad class of anomalous nonscaling patterns, which correspond either to crossovers between different power laws, or to a non-power-law behavior as exemplified by the logarithmic growth of the width of the distribution. We consider normal and modified forms of these generalized diffusion equations and provide a brief discussion of three generic types of integral kernels for each form, namely, distributed order, truncated power law and truncated distributed order kernels. For each of the cases considered we prove the non-negativity of the solution of the corresponding generalized diffusion equation and calculate the mean squared displacement. (C) 2017 Elsevier Ltd. All rights reserved. KW - Distributed order diffusion-wave equations KW - Complete Bernstein function KW - Completely monotone function Y1 - 2017 U6 - https://doi.org/10.1016/j.chaos.2017.05.001 SN - 0960-0779 SN - 1873-2887 VL - 102 SP - 210 EP - 217 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Sandev, Trifce A1 - Chechkin, Aleksei V. A1 - Kantz, Holger A1 - Metzler, Ralf T1 - Diffusion and fokker-planck-smoluchowski equations with generalized memory kernel JF - Fractional calculus and applied analysis : an international journal for theory and applications N2 - We consider anomalous stochastic processes based on the renewal continuous time random walk model with different forms for the probability density of waiting times between individual jumps. In the corresponding continuum limit we derive the generalized diffusion and Fokker-Planck-Smoluchowski equations with the corresponding memory kernels. We calculate the qth order moments in the unbiased and biased cases, and demonstrate that the generalized Einstein relation for the considered dynamics remains valid. The relaxation of modes in the case of an external harmonic potential and the convergence of the mean squared displacement to the thermal plateau are analyzed. KW - continuous time random walk (CTRW) KW - Fokker-Planck-Smoluchowski equation KW - Mittag-Leffler functions KW - anomalous diffusion KW - multi-scaling Y1 - 2015 U6 - https://doi.org/10.1515/fca-2015-0059 SN - 1311-0454 SN - 1314-2224 VL - 18 IS - 4 SP - 1006 EP - 1038 PB - De Gruyter CY - Berlin ER - TY - JOUR A1 - Sandev, Trifce A1 - Metzler, Ralf A1 - Chechkin, Aleksei V. T1 - From continuous time random walks to the generalized diffusion equation JF - Fractional calculus and applied analysis : an international journal for theory and applications N2 - We obtain a generalized diffusion equation in modified or Riemann-Liouville form from continuous time random walk theory. The waiting time probability density function and mean squared displacement for different forms of the equation are explicitly calculated. We show examples of generalized diffusion equations in normal or Caputo form that encode the same probability distribution functions as those obtained from the generalized diffusion equation in modified form. The obtained equations are general and many known fractional diffusion equations are included as special cases. KW - continuous time random walk (CTRW) KW - generalized diffusion equation KW - Mittag-Leffler functions KW - anomalous diffusion Y1 - 2018 U6 - https://doi.org/10.1515/fca-2018-0002 SN - 1311-0454 SN - 1314-2224 VL - 21 IS - 1 SP - 10 EP - 28 PB - De Gruyter CY - Berlin ER - TY - JOUR A1 - Singh, Rishu Kumar A1 - Metzler, Ralf A1 - Sandev, Trifce T1 - Resetting dynamics in a confining potential JF - Journal of physics : A, Mathematical and theoretical N2 - We study Brownian motion in a confining potential under a constant-rate resetting to a reset position x(0). The relaxation of this system to the steady-state exhibits a dynamic phase transition, and is achieved in a light cone region which grows linearly with time. When an absorbing boundary is introduced, effecting a symmetry breaking of the system, we find that resetting aids the barrier escape only when the particle starts on the same side as the barrier with respect to the origin. We find that the optimal resetting rate exhibits a continuous phase transition with critical exponent of unity. Exact expressions are derived for the mean escape time, the second moment, and the coefficient of variation (CV). KW - diffusion KW - resetting KW - barrier escape KW - first-passage Y1 - 2020 U6 - https://doi.org/10.1088/1751-8121/abc83a SN - 1751-8113 SN - 1751-8121 VL - 53 IS - 50 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Sandev, Trifce A1 - Iomin, Alexander A1 - Kantz, Holger A1 - Metzler, Ralf A1 - Chechkin, Aleksei V. T1 - Comb Model with Slow and Ultraslow Diffusion JF - Mathematical modelling of natural phenomena N2 - We consider a generalized diffusion equation in two dimensions for modeling diffusion on a comb-like structures. We analyze the probability distribution functions and we derive the mean squared displacement in x and y directions. Different forms of the memory kernels (Dirac delta, power-law, and distributed order) are considered. It is shown that anomalous diffusion may occur along both x and y directions. Ultraslow diffusion and some more general diffusive processes are observed as well. We give the corresponding continuous time random walk model for the considered two dimensional diffusion-like equation on a comb, and we derive the probability distribution functions which subordinate the process governed by this equation to the Wiener process. KW - comb-like model KW - anomalous diffusion KW - mean squared displacement KW - probability density function Y1 - 2016 U6 - https://doi.org/10.1051/mmnp/201611302 SN - 0973-5348 SN - 1760-6101 VL - 11 SP - 18 EP - 33 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Vilk, Ohad A1 - Aghion, Erez A1 - Nathan, Ran A1 - Toledo, Sivan A1 - Metzler, Ralf A1 - Assaf, Michael T1 - Classification of anomalous diffusion in animal movement data using power spectral analysis JF - Journal of physics : A, Mathematical and theoretical N2 - The field of movement ecology has seen a rapid increase in high-resolution data in recent years, leading to the development of numerous statistical and numerical methods to analyse relocation trajectories. Data are often collected at the level of the individual and for long periods that may encompass a range of behaviours. Here, we use the power spectral density (PSD) to characterise the random movement patterns of a black-winged kite (Elanus caeruleus) and a white stork (Ciconia ciconia). The tracks are first segmented and clustered into different behaviours (movement modes), and for each mode we measure the PSD and the ageing properties of the process. For the foraging kite we find 1/f noise, previously reported in ecological systems mainly in the context of population dynamics, but not for movement data. We further suggest plausible models for each of the behavioural modes by comparing both the measured PSD exponents and the distribution of the single-trajectory PSD to known theoretical results and simulations. KW - diffusion KW - anomalous diffusion KW - power spectral analysis KW - ecological KW - movement data Y1 - 2022 U6 - https://doi.org/10.1088/1751-8121/ac7e8f SN - 1751-8113 SN - 1751-8121 VL - 55 IS - 33 PB - IOP Publishing CY - Bristol ER -