TY - JOUR A1 - de Carvalho, Sidney J. A1 - Metzler, Ralf A1 - Cherstvy, Andrey G. T1 - Inverted critical adsorption of polyelectrolytes in confinement JF - Soft matter N2 - What are the fundamental laws for the adsorption of charged polymers onto oppositely charged surfaces, for convex, planar, and concave geometries? This question is at the heart of surface coating applications, various complex formation phenomena, as well as in the context of cellular and viral biophysics. It has been a long-standing challenge in theoretical polymer physics; for realistic systems the quantitative understanding is however often achievable only by computer simulations. In this study, we present the findings of such extensive Monte-Carlo in silico experiments for polymer-surface adsorption in confined domains. We study the inverted critical adsorption of finite-length polyelectrolytes in three fundamental geometries: planar slit, cylindrical pore, and spherical cavity. The scaling relations extracted from simulations for the critical surface charge density sigma(c)-defining the adsorption-desorption transition-are in excellent agreement with our analytical calculations based on the ground-state analysis of the Edwards equation. In particular, we confirm the magnitude and scaling of sigma(c) for the concave interfaces versus the Debye screening length 1/kappa and the extent of confinement a for these three interfaces for small kappa a values. For large kappa a the critical adsorption condition approaches the known planar limit. The transition between the two regimes takes place when the radius of surface curvature or half of the slit thickness a is of the order of 1/kappa. We also rationalize how sigma(c)(kappa) dependence gets modified for semi-flexible versus flexible chains under external confinement. We examine the implications of the chain length for critical adsorption-the effect often hard to tackle theoretically-putting an emphasis on polymers inside attractive spherical cavities. The applications of our findings to some biological systems are discussed, for instance the adsorption of nucleic acids onto the inner surfaces of cylindrical and spherical viral capsids. Y1 - 2015 U6 - https://doi.org/10.1039/c5sm00635j SN - 1744-683X SN - 1744-6848 VL - 11 IS - 22 SP - 4430 EP - 4443 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Bodrova, Anna A1 - Chechkin, Aleksei V. A1 - Cherstvy, Andrey G. A1 - Metzler, Ralf T1 - Quantifying non-ergodic dynamics of force-free granular gases JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - Brownian motion is ergodic in the Boltzmann-Khinchin sense that long time averages of physical observables such as the mean squared displacement provide the same information as the corresponding ensemble average, even at out-of-equilibrium conditions. This property is the fundamental prerequisite for single particle tracking and its analysis in simple liquids. We study analytically and by event-driven molecular dynamics simulations the dynamics of force-free cooling granular gases and reveal a violation of ergodicity in this Boltzmann-Khinchin sense as well as distinct ageing of the system. Such granular gases comprise materials such as dilute gases of stones, sand, various types of powders, or large molecules, and their mixtures are ubiquitous in Nature and technology, in particular in Space. We treat-depending on the physical-chemical properties of the inter-particle interaction upon their pair collisions-both a constant and a velocity-dependent (viscoelastic) restitution coefficient epsilon. Moreover we compare the granular gas dynamics with an effective single particle stochastic model based on an underdamped Langevin equation with time dependent diffusivity. We find that both models share the same behaviour of the ensemble mean squared displacement (MSD) and the velocity correlations in the limit of weak dissipation. Qualitatively, the reported non-ergodic behaviour is generic for granular gases with any realistic dependence of epsilon on the impact velocity of particles. Y1 - 2015 U6 - https://doi.org/10.1039/c5cp02824h SN - 1463-9076 SN - 1463-9084 VL - 17 IS - 34 SP - 21791 EP - 21798 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Guggenberger, Tobias A1 - Pagnini, Gianni A1 - Vojta, Thomas A1 - Metzler, Ralf T1 - Fractional Brownian motion in a finite interval BT - correlations effect depletion or accretion zones of particles near boundaries JF - New Journal of Physics N2 - Fractional Brownian motion (FBM) is a Gaussian stochastic process with stationary, long-time correlated increments and is frequently used to model anomalous diffusion processes. We study numerically FBM confined to a finite interval with reflecting boundary conditions. The probability density function of this reflected FBM at long times converges to a stationary distribution showing distinct deviations from the fully flat distribution of amplitude 1/L in an interval of length L found for reflected normal Brownian motion. While for superdiffusion, corresponding to a mean squared displacement (MSD) 〈X² (t)〉 ⋍ tᵅ with 1 < α < 2, the probability density function is lowered in the centre of the interval and rises towards the boundaries, for subdiffusion (0 < α < 1) this behaviour is reversed and the particle density is depleted close to the boundaries. The MSD in these cases at long times converges to a stationary value, which is, remarkably, monotonically increasing with the anomalous diffusion exponent α. Our a priori surprising results may have interesting consequences for the application of FBM for processes such as molecule or tracer diffusion in the confines of living biological cells or organelles, or other viscoelastic environments such as dense liquids in microfluidic chambers. KW - anomalous diffusion KW - fractional Brownian motion KW - reflecting boundary conditions Y1 - 2019 U6 - https://doi.org/10.1088/1367-2630/ab075f SN - 1367-2630 VL - 21 PB - Deutsche Physikalische Gesellschaft ; IOP, Institute of Physics CY - Bad Honnef und London ER - TY - JOUR A1 - Sposini, Vittoria A1 - Metzler, Ralf A1 - Oshanin, Gleb T1 - Single-trajectory spectral analysis of scaled Brownian motion JF - New Journal of Physics N2 - Astandard approach to study time-dependent stochastic processes is the power spectral density (PSD), an ensemble-averaged property defined as the Fourier transform of the autocorrelation function of the process in the asymptotic limit of long observation times, T → ∞. In many experimental situations one is able to garner only relatively few stochastic time series of finite T, such that practically neither an ensemble average nor the asymptotic limit T → ∞ can be achieved. To accommodate for a meaningful analysis of such finite-length data we here develop the framework of single-trajectory spectral analysis for one of the standard models of anomalous diffusion, scaled Brownian motion.Wedemonstrate that the frequency dependence of the single-trajectory PSD is exactly the same as for standard Brownian motion, which may lead one to the erroneous conclusion that the observed motion is normal-diffusive. However, a distinctive feature is shown to be provided by the explicit dependence on the measurement time T, and this ageing phenomenon can be used to deduce the anomalous diffusion exponent.Wealso compare our results to the single-trajectory PSD behaviour of another standard anomalous diffusion process, fractional Brownian motion, and work out the commonalities and differences. Our results represent an important step in establishing singletrajectory PSDs as an alternative (or complement) to analyses based on the time-averaged mean squared displacement. KW - diffusion KW - anomalous diffusion KW - power spectral analysis KW - single trajectory analysis Y1 - 2019 U6 - https://doi.org/10.1088/1367-2630/ab2f52 SN - 1367-2630 VL - 21 PB - Deutsche Physikalische Gesellschaft ; IOP, Institute of Physics CY - Bad Honnef und London ER - TY - JOUR A1 - Ślęzak, Jakub A1 - Burnecki, Krzysztof A1 - Metzler, Ralf T1 - Random coefficient autoregressive processes describe Brownian yet non-Gaussian diffusion in heterogeneous systems JF - New Journal of Physics N2 - Many studies on biological and soft matter systems report the joint presence of a linear mean-squared displacement and a non-Gaussian probability density exhibiting, for instance, exponential or stretched-Gaussian tails. This phenomenon is ascribed to the heterogeneity of the medium and is captured by random parameter models such as ‘superstatistics’ or ‘diffusing diffusivity’. Independently, scientists working in the area of time series analysis and statistics have studied a class of discrete-time processes with similar properties, namely, random coefficient autoregressive models. In this work we try to reconcile these two approaches and thus provide a bridge between physical stochastic processes and autoregressive models.Westart from the basic Langevin equation of motion with time-varying damping or diffusion coefficients and establish the link to random coefficient autoregressive processes. By exploring that link we gain access to efficient statistical methods which can help to identify data exhibiting Brownian yet non-Gaussian diffusion. KW - diffusion KW - Langevin equation KW - Brownian yet non-Gaussian diffusion KW - diffusing diffusivity KW - superstatistics KW - autoregressive models KW - time series analysis KW - codifference Y1 - 2019 U6 - https://doi.org/10.1088/1367-2630/ab3366 SN - 1367-2630 VL - 21 PB - Deutsche Physikalische Gesellschaft ; IOP, Institute of Physics CY - Bad Honnef und London ER - TY - JOUR A1 - Kindler, Oliver A1 - Pulkkinen, Otto A1 - Cherstvy, Andrey G. A1 - Metzler, Ralf T1 - Burst Statistics in an Early Biofilm Quorum Sensing Mode BT - The Role of Spatial Colony-Growth Heterogeneity JF - Scientific Reports N2 - Quorum-sensing bacteria in a growing colony of cells send out signalling molecules (so-called “autoinducers”) and themselves sense the autoinducer concentration in their vicinity. Once—due to increased local cell density inside a “cluster” of the growing colony—the concentration of autoinducers exceeds a threshold value, cells in this clusters get “induced” into a communal, multi-cell biofilm-forming mode in a cluster-wide burst event. We analyse quantitatively the influence of spatial disorder, the local heterogeneity of the spatial distribution of cells in the colony, and additional physical parameters such as the autoinducer signal range on the induction dynamics of the cell colony. Spatial inhomogeneity with higher local cell concentrations in clusters leads to earlier but more localised induction events, while homogeneous distributions lead to comparatively delayed but more concerted induction of the cell colony, and, thus, a behaviour close to the mean-field dynamics. We quantify the induction dynamics with quantifiers such as the time series of induction events and burst sizes, the grouping into induction families, and the mean autoinducer concentration levels. Consequences for different scenarios of biofilm growth are discussed, providing possible cues for biofilm control in both health care and biotechnology. Y1 - 2019 U6 - https://doi.org/10.1038/s41598-019-48525-2 SN - 2045-2322 VL - 9 PB - Macmillan Publishers Limited part of Springer Nature CY - London ER - TY - JOUR A1 - Chechkin, Aleksei V. A1 - Kantz, Holger A1 - Metzler, Ralf T1 - Ageing effects in ultraslow continuous time random walks JF - The European physical journal : B, Condensed matter and complex systems N2 - In ageing systems physical observables explicitly depend on the time span elapsing between the original initiation of the system and the actual start of the recording of the particle motion. We here study the signatures of ageing in the framework of ultraslow continuous time random walk processes with super-heavy tailed waiting time densities. We derive the density for the forward or recurrent waiting time of the motion as function of the ageing time, generalise the Montroll-Weiss equation for this process, and analyse the ageing behaviour of the ensemble and time averaged mean squared displacements. Y1 - 2017 U6 - https://doi.org/10.1140/epjb/e2017-80270-9 SN - 1434-6028 SN - 1434-6036 VL - 90 PB - Springer CY - New York ER - TY - JOUR A1 - Schwarzl, Maria A1 - Godec, Aljaz A1 - Metzler, Ralf T1 - Quantifying non-ergodicity of anomalous diffusion with higher order moments JF - Scientific reports N2 - Anomalous diffusion is being discovered in a fast growing number of systems. The exact nature of this anomalous diffusion provides important information on the physical laws governing the studied system. One of the central properties analysed for finite particle motion time series is the intrinsic variability of the apparent diffusivity, typically quantified by the ergodicity breaking parameter EB. Here we demonstrate that frequently EB is insufficient to provide a meaningful measure for the observed variability of the data. Instead, important additional information is provided by the higher order moments entering by the skewness and kurtosis. We analyse these quantities for three popular anomalous diffusion models. In particular, we find that even for the Gaussian fractional Brownian motion a significant skewness in the results of physical measurements occurs and needs to be taken into account. Interestingly, the kurtosis and skewness may also provide sensitive estimates of the anomalous diffusion exponent underlying the data. We also derive a new result for the EB parameter of fractional Brownian motion valid for the whole range of the anomalous diffusion parameter. Our results are important for the analysis of anomalous diffusion but also provide new insights into the theory of anomalous stochastic processes. Y1 - 2017 U6 - https://doi.org/10.1038/s41598-017-03712-x SN - 2045-2322 VL - 7 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Cherstvy, Andrey G. A1 - Vinod, Deepak A1 - Aghion, Erez A1 - Chechkin, Aleksei V. A1 - Metzler, Ralf T1 - Time averaging, ageing and delay analysis of financial time series JF - New journal of physics : the open-access journal for physics N2 - We introduce three strategies for the analysis of financial time series based on time averaged observables. These comprise the time averaged mean squared displacement (MSD) as well as the ageing and delay time methods for varying fractions of the financial time series. We explore these concepts via statistical analysis of historic time series for several Dow Jones Industrial indices for the period from the 1960s to 2015. Remarkably, we discover a simple universal law for the delay time averaged MSD. The observed features of the financial time series dynamics agree well with our analytical results for the time averaged measurables for geometric Brownian motion, underlying the famed Black-Scholes-Merton model. The concepts we promote here are shown to be useful for financial data analysis and enable one to unveil new universal features of stock market dynamics. KW - time averaging KW - diffusion KW - geometric Brownian motion KW - financial time series Y1 - 2017 U6 - https://doi.org/10.1088/1367-2630/aa7199 SN - 1367-2630 VL - 19 SP - 135 EP - 147 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Awad, Emad A1 - Metzler, Ralf T1 - Closed-form multi-dimensional solutions and asymptotic behaviours for subdiffusive processes with crossovers: II. Accelerating case JF - Journal of physics : A, Mathematical and theoretical N2 - Anomalous diffusion with a power-law time dependence vertical bar R vertical bar(2)(t) similar or equal to t(alpha i) of the mean squared displacement occurs quite ubiquitously in numerous complex systems. Often, this anomalous diffusion is characterised by crossovers between regimes with different anomalous diffusion exponents alpha(i). Here we consider the case when such a crossover occurs from a first regime with alpha(1) to a second regime with alpha(2) such that alpha(2) > alpha(1), i.e., accelerating anomalous diffusion. A widely used framework to describe such crossovers in a one-dimensional setting is the bi-fractional diffusion equation of the so-called modified type, involving two time-fractional derivatives defined in the Riemann-Liouville sense. We here generalise this bi-fractional diffusion equation to higher dimensions and derive its multidimensional propagator (Green's function) for the general case when also a space fractional derivative is present, taking into consideration long-ranged jumps (Levy flights). We derive the asymptotic behaviours for this propagator in both the short- and long-time as well the short- and long-distance regimes. Finally, we also calculate the mean squared displacement, skewness and kurtosis in all dimensions, demonstrating that in the general case the non-Gaussian shape of the probability density function changes. KW - multidimensional fractional diffusion equation KW - continuous time random KW - walks KW - crossover anomalous diffusion dynamics KW - non-Gaussian probability KW - density Y1 - 2022 U6 - https://doi.org/10.1088/1751-8121/ac5a90 SN - 1751-8113 SN - 1751-8121 VL - 55 IS - 20 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Wang, Wei A1 - Metzler, Ralf A1 - Cherstvy, Andrey G. T1 - Anomalous diffusion, aging, and nonergodicity of scaled Brownian motion with fractional Gaussian noise: overview of related experimental observations and models JF - Physical chemistry, chemical physics : PCCP ; a journal of European chemical societies N2 - How does a systematic time-dependence of the diffusion coefficient D(t) affect the ergodic and statistical characteristics of fractional Brownian motion (FBM)? Here, we answer this question via studying the characteristics of a set of standard statistical quantifiers relevant to single-particle-tracking (SPT) experiments. We examine, for instance, how the behavior of the ensemble- and time-averaged mean-squared displacements-denoted as the standard MSD < x(2)(Delta)> and TAMSD <<(delta(2)(Delta))over bar>> quantifiers-of FBM featuring < x(2) (Delta >> = <<(delta(2)(Delta >)over bar>> proportional to Delta(2H) (where H is the Hurst exponent and Delta is the [lag] time) changes in the presence of a power-law deterministically varying diffusivity D-proportional to(t) proportional to t(alpha-1) -germane to the process of scaled Brownian motion (SBM)-determining the strength of fractional Gaussian noise. The resulting compound "scaled-fractional" Brownian motion or FBM-SBM is found to be nonergodic, with < x(2)(Delta >> proportional to Delta(alpha+)(2H)(-1) and <(delta 2(Delta >) over bar > proportional to Delta(2H). We also detect a stalling behavior of the MSDs for very subdiffusive SBM and FBM, when alpha + 2H - 1 < 0. The distribution of particle displacements for FBM-SBM remains Gaussian, as that for the parent processes of FBM and SBM, in the entire region of scaling exponents (0 < alpha < 2 and 0 < H < 1). The FBM-SBM process is aging in a manner similar to SBM. The velocity autocorrelation function (ACF) of particle increments of FBM-SBM exhibits a dip when the parent FBM process is subdiffusive. Both for sub- and superdiffusive FBM contributions to the FBM-SBM process, the SBM exponent affects the long-time decay exponent of the ACF. Applications of the FBM-SBM-amalgamated process to the analysis of SPT data are discussed. A comparative tabulated overview of recent experimental (mainly SPT) and computational datasets amenable for interpretation in terms of FBM-, SBM-, and FBM-SBM-like models of diffusion culminates the presentation. The statistical aspects of the dynamics of a wide range of biological systems is compared in the table, from nanosized beads in living cells, to chromosomal loci, to water diffusion in the brain, and, finally, to patterns of animal movements. Y1 - 2022 U6 - https://doi.org/10.1039/d2cp01741e SN - 1463-9076 SN - 1463-9084 VL - 24 IS - 31 SP - 18482 EP - 18504 PB - RSC Publ. CY - Cambridge ER - TY - JOUR A1 - Ritschel, Stefan A1 - Cherstvy, Andrey G. A1 - Metzler, Ralf T1 - Universality of delay-time averages for financial time series BT - analytical results, computer simulations, and analysis of historical stock-market prices JF - Journal of physics. Complexity N2 - We analyze historical data of stock-market prices for multiple financial indices using the concept of delay-time averaging for the financial time series (FTS). The region of validity of our recent theoretical predictions [Cherstvy A G et al 2017 New J. Phys. 19 063045] for the standard and delayed time-averaged mean-squared 'displacements' (TAMSDs) of the historical FTS is extended to all lag times. As the first novel element, we perform extensive computer simulations of the stochastic differential equation describing geometric Brownian motion (GBM) which demonstrate a quantitative agreement with the analytical long-term price-evolution predictions in terms of the delayed TAMSD (for all stock-market indices in crisis-free times). Secondly, we present a robust procedure of determination of the model parameters of GBM via fitting the features of the price-evolution dynamics in the FTS for stocks and cryptocurrencies. The employed concept of single-trajectory-based time averaging can serve as a predictive tool (proxy) for a mathematically based assessment and rationalization of probabilistic trends in the evolution of stock-market prices. KW - econophysics KW - geometric Brownian motion KW - time-series analysis Y1 - 2021 U6 - https://doi.org/10.1088/2632-072X/ac2220 SN - 2632-072X VL - 2 IS - 4 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Scott, Shane A1 - Weiss, Matthias A1 - Selhuber-Unkel, Christine A1 - Barooji, Younes F. A1 - Sabri, Adal A1 - Erler, Janine T. A1 - Metzler, Ralf A1 - Oddershede, Lene B. T1 - Extracting, quantifying, and comparing dynamical and biomechanical properties of living matter through single particle tracking JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - A panoply of new tools for tracking single particles and molecules has led to an explosion of experimental data, leading to novel insights into physical properties of living matter governing cellular development and function, health and disease. In this Perspective, we present tools to investigate the dynamics and mechanics of living systems from the molecular to cellular scale via single-particle techniques. In particular, we focus on methods to measure, interpret, and analyse complex data sets that are associated with forces, materials properties, transport, and emergent organisation phenomena within biological and soft-matter systems. Current approaches, challenges, and existing solutions in the associated fields are outlined in order to support the growing community of researchers at the interface of physics and the life sciences. Each section focuses not only on the general physical principles and the potential for understanding living matter, but also on details of practical data extraction and analysis, discussing limitations, interpretation, and comparison across different experimental realisations and theoretical frameworks. Particularly relevant results are introduced as examples. While this Perspective describes living matter from a physical perspective, highlighting experimental and theoretical physics techniques relevant for such systems, it is also meant to serve as a solid starting point for researchers in the life sciences interested in the implementation of biophysical methods. Y1 - 2022 U6 - https://doi.org/10.1039/d2cp01384c SN - 1463-9076 SN - 1463-9084 VL - 25 IS - 3 SP - 1513 EP - 1537 PB - RSC Publ. CY - Cambridge ER - TY - GEN A1 - Grebenkov, Denis S. A1 - Metzler, Ralf A1 - Oshanin, Gleb T1 - Distribution of first-reaction times with target regions on boundaries of shell-like domains T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - We study the probability density function (PDF) of the first-reaction times between a diffusive ligand and a membrane-bound, immobile imperfect target region in a restricted 'onion-shell' geometry bounded by two nested membranes of arbitrary shapes. For such a setting, encountered in diverse molecular signal transduction pathways or in the narrow escape problem with additional steric constraints, we derive an exact spectral form of the PDF, as well as present its approximate form calculated by help of the so-called self-consistent approximation. For a particular case when the nested domains are concentric spheres, we get a fully explicit form of the approximated PDF, assess the accuracy of this approximation, and discuss various facets of the obtained distributions. Our results can be straightforwardly applied to describe the PDF of the terminal reaction event in multi-stage signal transduction processes. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1255 KW - diffusion KW - first-passage time KW - first-reaction time KW - shell-like geometries KW - approximate methods Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-557542 SN - 1866-8372 SP - 1 EP - 23 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - JOUR A1 - Grebenkov, Denis S. A1 - Metzler, Ralf A1 - Oshanin, Gleb T1 - Distribution of first-reaction times with target regions on boundaries of shell-like domains JF - New Journal of Physics (NJP) N2 - We study the probability density function (PDF) of the first-reaction times between a diffusive ligand and a membrane-bound, immobile imperfect target region in a restricted 'onion-shell' geometry bounded by two nested membranes of arbitrary shapes. For such a setting, encountered in diverse molecular signal transduction pathways or in the narrow escape problem with additional steric constraints, we derive an exact spectral form of the PDF, as well as present its approximate form calculated by help of the so-called self-consistent approximation. For a particular case when the nested domains are concentric spheres, we get a fully explicit form of the approximated PDF, assess the accuracy of this approximation, and discuss various facets of the obtained distributions. Our results can be straightforwardly applied to describe the PDF of the terminal reaction event in multi-stage signal transduction processes. KW - diffusion KW - first-passage time KW - first-reaction time KW - shell-like geometries KW - approximate methods Y1 - 2021 U6 - https://doi.org/10.1088/1367-2630/ac4282 SN - 1367-2630 VL - 2021 SP - 1 EP - 23 PB - IOP Publishing CY - London ET - 23 ER - TY - JOUR A1 - Tomovski, Živorad A1 - Metzler, Ralf A1 - Gerhold, Stefan T1 - Fractional characteristic functions, and a fractional calculus approach for moments of random variables JF - Fractional calculus and applied analysis : an international journal for theory and applications N2 - In this paper we introduce a fractional variant of the characteristic function of a random variable. It exists on the whole real line, and is uniformly continuous. We show that fractional moments can be expressed in terms of Riemann-Liouville integrals and derivatives of the fractional characteristic function. The fractional moments are of interest in particular for distributions whose integer moments do not exist. Some illustrative examples for particular distributions are also presented. KW - Fractional calculus (primary) KW - Characteristic function KW - Mittag-Leffler KW - function KW - Fractional moments KW - Mellin transform Y1 - 2022 U6 - https://doi.org/10.1007/s13540-022-00047-x SN - 1314-2224 VL - 25 IS - 4 SP - 1307 EP - 1323 PB - De Gruyter CY - Berlin ; Boston ER - TY - JOUR A1 - Mutothya, Nicholas Mwilu A1 - Xu, Yong A1 - Li, Yongge A1 - Metzler, Ralf A1 - Mutua, Nicholas Muthama T1 - First passage dynamics of stochastic motion in heterogeneous media driven by correlated white Gaussian and coloured non-Gaussian noises JF - Journal of physics. Complexity N2 - We study the first passage dynamics for a diffusing particle experiencing a spatially varying diffusion coefficient while driven by correlated additive Gaussian white noise and multiplicative coloured non-Gaussian noise. We consider three functional forms for position dependence of the diffusion coefficient: power-law, exponential, and logarithmic. The coloured non-Gaussian noise is distributed according to Tsallis' q-distribution. Tracks of the non-Markovian systems are numerically simulated by using the fourth-order Runge-Kutta algorithm and the first passage times (FPTs) are recorded. The FPT density is determined along with the mean FPT (MFPT). Effects of the noise intensity and self-correlation of the multiplicative noise, the intensity of the additive noise, the cross-correlation strength, and the non-extensivity parameter on the MFPT are discussed. KW - first passage KW - diffusion KW - non-Gaussian KW - correlated noise Y1 - 2021 U6 - https://doi.org/10.1088/2632-072X/ac35b5 SN - 2632-072X VL - 2 PB - IOP Publishing CY - Bristol ER - TY - GEN A1 - Grebenkov, Denis S. A1 - Metzler, Ralf A1 - Oshanin, Gleb T1 - Strong defocusing of molecular reaction times results from an interplay of geometry and reaction control T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Textbook concepts of diffusion-versus kinetic-control are well-defined for reaction-kinetics involving macroscopic concentrations of diffusive reactants that are adequately described by rate-constants—the inverse of the mean-first-passage-time to the reaction-event. In contradiction, an open important question is whether the mean-first-passage-time alone is a sufficient measure for biochemical reactions that involve nanomolar reactant concentrations. Here, using a simple yet generic, exactly solvable model we study the effect of diffusion and chemical reaction-limitations on the full reaction-time distribution. We show that it has a complex structure with four distinct regimes delineated by three characteristic time scales spanning a window of several decades. Consequently, the reaction-times are defocused: no unique time-scale characterises the reaction-process, diffusion- and kinetic-control can no longer be disentangled, and it is imperative to know the full reaction-time distribution. We introduce the concepts of geometry- and reaction-control, and also quantify each regime by calculating the corresponding reaction depth. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 527 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-422989 SN - 1866-8372 IS - 527 ER - TY - JOUR A1 - Grebenkov, Denis S. A1 - Metzler, Ralf A1 - Oshanin, Gleb T1 - A molecular relay race: sequential first-passage events to the terminal reaction centre in a cascade of diffusion controlled processes JF - New Journal of Physics (NJP) N2 - We consider a sequential cascade of molecular first-reaction events towards a terminal reaction centre in which each reaction step is controlled by diffusive motion of the particles. The model studied here represents a typical reaction setting encountered in diverse molecular biology systems, in which, e.g. a signal transduction proceeds via a series of consecutive 'messengers': the first messenger has to find its respective immobile target site triggering a launch of the second messenger, the second messenger seeks its own target site and provokes a launch of the third messenger and so on, resembling a relay race in human competitions. For such a molecular relay race taking place in infinite one-, two- and three-dimensional systems, we find exact expressions for the probability density function of the time instant of the terminal reaction event, conditioned on preceding successful reaction events on an ordered array of target sites. The obtained expressions pertain to the most general conditions: number of intermediate stages and the corresponding diffusion coefficients, the sizes of the target sites, the distances between them, as well as their reactivities are arbitrary. KW - diffusion KW - reaction cascade KW - first passage time Y1 - 2021 U6 - https://doi.org/10.1088/1367-2630/ac1e42 SN - 1367-2630 VL - 23 PB - IOP - Institute of Physics Publishing CY - Bristol ER - TY - GEN A1 - Grebenkov, Denis S. A1 - Metzler, Ralf A1 - Oshanin, Gleb T1 - From single-particle stochastic kinetics to macroscopic reaction rates BT - fastest first-passage time of N random walkers T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - We consider the first-passage problem for N identical independent particles that are initially released uniformly in a finite domain Ω and then diffuse toward a reactive area Γ, which can be part of the outer boundary of Ω or a reaction centre in the interior of Ω. For both cases of perfect and partial reactions, we obtain the explicit formulas for the first two moments of the fastest first-passage time (fFPT), i.e., the time when the first out of the N particles reacts with Γ. Moreover, we investigate the full probability density of the fFPT. We discuss a significant role of the initial condition in the scaling of the average fFPT with the particle number N, namely, a much stronger dependence (1/N and 1/N² for partially and perfectly reactive targets, respectively), in contrast to the well known inverse-logarithmic behaviour found when all particles are released from the same fixed point. We combine analytic solutions with scaling arguments and stochastic simulations to rationalise our results, which open new perspectives for studying the relevance of multiple searchers in various situations of molecular reactions, in particular, in living cells. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1018 KW - diffusion KW - first-passage KW - fastest first-passage time of N walkers Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-484059 SN - 1866-8372 IS - 1018 ER - TY - JOUR A1 - Ghosh, Surya K. A1 - Cherstvy, Andrey G. A1 - Grebenkov, Denis S. A1 - Metzler, Ralf T1 - Anomalous, non-Gaussian tracer diffusion in crowded two-dimensional environments JF - NEW JOURNAL OF PHYSICS N2 - A topic of intense current investigation pursues the question of how the highly crowded environment of biological cells affects the dynamic properties of passively diffusing particles. Motivated by recent experiments we report results of extensive simulations of the motion of a finite sized tracer particle in a heterogeneously crowded environment made up of quenched distributions of monodisperse crowders of varying sizes in finite circular two-dimensional domains. For given spatial distributions of monodisperse crowders we demonstrate how anomalous diffusion with strongly non-Gaussian features arises in this model system. We investigate both biologically relevant situations of particles released either at the surface of an inner domain or at the outer boundary, exhibiting distinctly different features of the observed anomalous diffusion for heterogeneous distributions of crowders. Specifically we reveal an asymmetric spreading of tracers even at moderate crowding. In addition to the mean squared displacement (MSD) and local diffusion exponent we investigate the magnitude and the amplitude scatter of the time averaged MSD of individual tracer trajectories, the non-Gaussianity parameter, and the van Hove correlation function. We also quantify how the average tracer diffusivity varies with the position in the domain with a heterogeneous radial distribution of crowders and examine the behaviour of the survival probability and the dynamics of the tracer survival probability. Inter alia, the systems we investigate are related to the passive transport of lipid molecules and proteins in two-dimensional crowded membranes or the motion in colloidal solutions or emulsions in effectively two-dimensional geometries, as well as inside supercrowded, surface adhered cells. KW - anomalous diffusion KW - crowded fluids KW - stochastic processes Y1 - 2016 U6 - https://doi.org/10.1088/1367-2630/18/1/013027 SN - 1367-2630 VL - 18 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Sposini, Vittoria A1 - Grebenkov, Denis S. A1 - Metzler, Ralf A1 - Oshanin, Gleb A1 - Seno, Flavio T1 - Universal spectral features of different classes of random-diffusivity processes JF - New Journal of Physics N2 - Stochastic models based on random diffusivities, such as the diffusing-diffusivity approach, are popular concepts for the description of non-Gaussian diffusion in heterogeneous media. Studies of these models typically focus on the moments and the displacement probability density function. Here we develop the complementary power spectral description for a broad class of random-diffusivity processes. In our approach we cater for typical single particle tracking data in which a small number of trajectories with finite duration are garnered. Apart from the diffusing-diffusivity model we study a range of previously unconsidered random-diffusivity processes, for which we obtain exact forms of the probability density function. These new processes are different versions of jump processes as well as functionals of Brownian motion. The resulting behaviour subtly depends on the specific model details. Thus, the central part of the probability density function may be Gaussian or non-Gaussian, and the tails may assume Gaussian, exponential, log-normal, or even power-law forms. For all these models we derive analytically the moment-generating function for the single-trajectory power spectral density. We establish the generic 1/f²-scaling of the power spectral density as function of frequency in all cases. Moreover, we establish the probability density for the amplitudes of the random power spectral density of individual trajectories. The latter functions reflect the very specific properties of the different random-diffusivity models considered here. Our exact results are in excellent agreement with extensive numerical simulations. KW - diffusion KW - power spectrum KW - random diffusivity KW - single trajectories Y1 - 2020 U6 - https://doi.org/10.1088/1367-2630/ab9200 SN - 1367-2630 VL - 22 IS - 6 PB - Dt. Physikalische Ges. CY - Bad Honnef ER - TY - JOUR A1 - Grebenkov, Denis S. A1 - Metzler, Ralf A1 - Oshanin, Gleb T1 - Effects of the target aspect ratio and intrinsic reactivity onto diffusive search in bounded domains JF - New journal of physics : the open-access journal for physics N2 - We study the mean first passage time (MFPT) to a reaction event on a specific site in a cylindrical geometry-characteristic, for instance, for bacterial cells, with a concentric inner cylinder representing the nuclear region of the bacterial cell. A similar problem emerges in the description of a diffusive search by a transcription factor protein for a specific binding region on a single strand of DNA. We develop a unified theoretical approach to study the underlying boundary value problem which is based on a self-consistent approximation of the mixed boundary condition. Our approach permits us to derive explicit, novel, closed-form expressions for the MFPT valid for a generic setting with an arbitrary relation between the system parameters. We analyse this general result in the asymptotic limits appropriate for the above-mentioned biophysical problems. Our investigation reveals the crucial role of the target aspect ratio and of the intrinsic reactivity of the binding region, which were disregarded in previous studies. Theoretical predictions are confirmed by numerical simulations. KW - first passage time KW - cylindrical geometry KW - aspect ratio KW - protein search Y1 - 2017 U6 - https://doi.org/10.1088/1367-2630/aa8ed9 SN - 1367-2630 VL - 19 PB - IOP Publ. Ltd. CY - Bristol ER - TY - GEN A1 - Sposini, Vittoria A1 - Grebenkov, Denis S. A1 - Metzler, Ralf A1 - Oshanin, Gleb A1 - Seno, Flavio T1 - Universal spectral features of different classes of random-diffusivity processes T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Stochastic models based on random diffusivities, such as the diffusing-diffusivity approach, are popular concepts for the description of non-Gaussian diffusion in heterogeneous media. Studies of these models typically focus on the moments and the displacement probability density function. Here we develop the complementary power spectral description for a broad class of random-diffusivity processes. In our approach we cater for typical single particle tracking data in which a small number of trajectories with finite duration are garnered. Apart from the diffusing-diffusivity model we study a range of previously unconsidered random-diffusivity processes, for which we obtain exact forms of the probability density function. These new processes are different versions of jump processes as well as functionals of Brownian motion. The resulting behaviour subtly depends on the specific model details. Thus, the central part of the probability density function may be Gaussian or non-Gaussian, and the tails may assume Gaussian, exponential, log-normal, or even power-law forms. For all these models we derive analytically the moment-generating function for the single-trajectory power spectral density. We establish the generic 1/f²-scaling of the power spectral density as function of frequency in all cases. Moreover, we establish the probability density for the amplitudes of the random power spectral density of individual trajectories. The latter functions reflect the very specific properties of the different random-diffusivity models considered here. Our exact results are in excellent agreement with extensive numerical simulations. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 999 KW - diffusion KW - power spectrum KW - random diffusivity KW - single trajectories Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-476960 SN - 1866-8372 IS - 999 ER - TY - JOUR A1 - Grebenkov, Denis S. A1 - Metzler, Ralf A1 - Oshanin, Gleb T1 - From single-particle stochastic kinetics to macroscopic reaction rates BT - fastest first-passage time of N random walkers JF - New Journal of Physics N2 - We consider the first-passage problem for N identical independent particles that are initially released uniformly in a finite domain Ω and then diffuse toward a reactive area Γ, which can be part of the outer boundary of Ω or a reaction centre in the interior of Ω. For both cases of perfect and partial reactions, we obtain the explicit formulas for the first two moments of the fastest first-passage time (fFPT), i.e., the time when the first out of the N particles reacts with Γ. Moreover, we investigate the full probability density of the fFPT. We discuss a significant role of the initial condition in the scaling of the average fFPT with the particle number N, namely, a much stronger dependence (1/N and 1/N² for partially and perfectly reactive targets, respectively), in contrast to the well known inverse-logarithmic behaviour found when all particles are released from the same fixed point. We combine analytic solutions with scaling arguments and stochastic simulations to rationalise our results, which open new perspectives for studying the relevance of multiple searchers in various situations of molecular reactions, in particular, in living cells. KW - diffusion KW - first-passage KW - fastest first-passage time of N walkers Y1 - 2020 U6 - https://doi.org/10.1088/1367-2630/abb1de SN - 1367-2630 VL - 22 PB - Dt. Physikalische Ges. CY - Bad Honnef ER - TY - GEN A1 - Grebenkov, Denis S. A1 - Metzler, Ralf A1 - Oshanin, Gleb T1 - Full distribution of first exit times in the narrow escape problem T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - In the scenario of the narrow escape problem (NEP) a particle diffuses in a finite container and eventually leaves it through a small 'escape window' in the otherwise impermeable boundary, once it arrives to this window and crosses an entropic barrier at the entrance to it. This generic problem is mathematically identical to that of a diffusion-mediated reaction with a partially-reactive site on the container's boundary. Considerable knowledge is available on the dependence of the mean first-reaction time (FRT) on the pertinent parameters. We here go a distinct step further and derive the full FRT distribution for the NEP. We demonstrate that typical FRTs may be orders of magnitude shorter than the mean one, thus resulting in a strong defocusing of characteristic temporal scales. We unveil the geometry-control of the typical times, emphasising the role of the initial distance to the target as a decisive parameter. A crucial finding is the further FRT defocusing due to the barrier, necessitating repeated escape or reaction attempts interspersed with bulk excursions. These results add new perspectives and offer a broad comprehension of various features of the by-now classical NEP that are relevant for numerous biological and technological systems. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 810 KW - narrow escape problem KW - first-passage time distribution KW - mean versus most probable reaction times KW - mixed boundary conditions Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-442883 SN - 1866-8372 IS - 810 ER - TY - GEN A1 - Grebenkov, Denis S. A1 - Metzler, Ralf A1 - Oshanin, Gleb T1 - Effects of the target aspect ratio and intrinsic reactivity onto diffusive search in bounded domains N2 - We study the mean first passage time (MFPT) to a reaction event on a specific site in a cylindrical geometry—characteristic, for instance, for bacterial cells, with a concentric inner cylinder representing the nuclear region of the bacterial cell. Asimilar problem emerges in the description of a diffusive search by a transcription factor protein for a specific binding region on a single strand of DNA.We develop a unified theoretical approach to study the underlying boundary value problem which is based on a self-consistent approximation of the mixed boundary condition. Our approach permits us to derive explicit, novel, closed-form expressions for the MFPT valid for a generic setting with an arbitrary relation between the system parameters.Weanalyse this general result in the asymptotic limits appropriate for the above-mentioned biophysical problems. Our investigation reveals the crucial role of the target aspect ratio and of the intrinsic reactivity of the binding region, which were disregarded in previous studies. Theoretical predictions are confirmed by numerical simulations. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 391 KW - aspect ratio KW - cylindrical geometry KW - first passage time KW - protein search Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-403726 ER - TY - JOUR A1 - Grebenkov, Denis S. A1 - Metzler, Ralf A1 - Oshanin, Gleb T1 - Effects of the target aspect ratio and intrinsic reactivity onto diffusive search in bounded domains JF - New journal of physics N2 - Westudy the mean first passage time (MFPT) to a reaction event on a specific site in a cylindrical geometry—characteristic, for instance, for bacterial cells, with a concentric inner cylinder representing the nuclear region of the bacterial cell. Asimilar problem emerges in the description of a diffusive search by a transcription factor protein for a specific binding region on a single strand of DNA.We develop a unified theoretical approach to study the underlying boundary value problem which is based on a self-consistent approximation of the mixed boundary condition. Our approach permits us to derive explicit, novel, closed-form expressions for the MFPT valid for a generic setting with an arbitrary relation between the system parameters.Weanalyse this general result in the asymptotic limits appropriate for the above-mentioned biophysical problems. Our investigation reveals the crucial role of the target aspect ratio and of the intrinsic reactivity of the binding region, which were disregarded in previous studies. Theoretical predictions are confirmed by numerical simulations. KW - first passage time KW - cylindrical geometry KW - aspect ratio KW - protein search Y1 - 2017 U6 - https://doi.org/10.1088/1367-2630/aa8ed9 SN - 1367-2630 VL - 19 SP - 1 EP - 11 PB - IOP CY - London ER - TY - JOUR A1 - Grebenkov, Denis S. A1 - Metzler, Ralf A1 - Oshanin, Gleb T1 - Strong defocusing of molecular reaction times results from an interplay of geometry and reaction control JF - Communications Chemistry N2 - Textbook concepts of diffusion-versus kinetic-control are well-defined for reaction-kinetics involving macroscopic concentrations of diffusive reactants that are adequately described by rate-constants—the inverse of the mean-first-passage-time to the reaction-event. In contradiction, an open important question is whether the mean-first-passage-time alone is a sufficient measure for biochemical reactions that involve nanomolar reactant concentrations. Here, using a simple yet generic, exactly solvable model we study the effect of diffusion and chemical reaction-limitations on the full reaction-time distribution. We show that it has a complex structure with four distinct regimes delineated by three characteristic time scales spanning a window of several decades. Consequently, the reaction-times are defocused: no unique time-scale characterises the reaction-process, diffusion- and kinetic-control can no longer be disentangled, and it is imperative to know the full reaction-time distribution. We introduce the concepts of geometry- and reaction-control, and also quantify each regime by calculating the corresponding reaction depth. Y1 - 2018 U6 - https://doi.org/10.1038/s42004-018-0096-x SN - 2399-3669 VL - 1 PB - Macmillan Publishers Limited CY - London ER - TY - JOUR A1 - Grebenkov, Denis S. A1 - Metzler, Ralf A1 - Oshanin, Gleb T1 - Full distribution of first exit times in the narrow escape problem JF - New Journal of Physics N2 - In the scenario of the narrow escape problem (NEP) a particle diffuses in a finite container and eventually leaves it through a small 'escape window' in the otherwise impermeable boundary, once it arrives to this window and crosses an entropic barrier at the entrance to it. This generic problem is mathematically identical to that of a diffusion-mediated reaction with a partially-reactive site on the container's boundary. Considerable knowledge is available on the dependence of the mean first-reaction time (FRT) on the pertinent parameters. We here go a distinct step further and derive the full FRT distribution for the NEP. We demonstrate that typical FRTs may be orders of magnitude shorter than the mean one, thus resulting in a strong defocusing of characteristic temporal scales. We unveil the geometry-control of the typical times, emphasising the role of the initial distance to the target as a decisive parameter. A crucial finding is the further FRT defocusing due to the barrier, necessitating repeated escape or reaction attempts interspersed with bulk excursions. These results add new perspectives and offer a broad comprehension of various features of the by-now classical NEP that are relevant for numerous biological and technological systems. KW - narrow escape problem KW - first-passage time distribution KW - mean versus most probable reaction times KW - mixed boundary conditions Y1 - 2019 U6 - https://doi.org/10.1088/1367-2630/ab5de4 SN - 1367-2630 VL - 21 PB - Dt. Physikalische Ges. CY - Bad Honnef ER - TY - JOUR A1 - Grebenkov, Denis S. A1 - Sposini, Vittoria A1 - Metzler, Ralf A1 - Oshanin, Gleb A1 - Seno, Flavio T1 - Exact distributions of the maximum and range of random diffusivity processes JF - New Journal of Physics N2 - We study the extremal properties of a stochastic process xt defined by the Langevin equation ẋₜ =√2Dₜ ξₜ, in which ξt is a Gaussian white noise with zero mean and Dₜ is a stochastic‘diffusivity’, defined as a functional of independent Brownian motion Bₜ.We focus on threechoices for the random diffusivity Dₜ: cut-off Brownian motion, Dₜt ∼ Θ(Bₜ), where Θ(x) is the Heaviside step function; geometric Brownian motion, Dₜ ∼ exp(−Bₜ); and a superdiffusive process based on squared Brownian motion, Dₜ ∼ B²ₜ. For these cases we derive exact expressions for the probability density functions of the maximal positive displacement and of the range of the process xₜ on the time interval ₜ ∈ (0, T).We discuss the asymptotic behaviours of the associated probability density functions, compare these against the behaviour of the corresponding properties of standard Brownian motion with constant diffusivity (Dₜ = D0) and also analyse the typical behaviour of the probability density functions which is observed for a majority of realisations of the stochastic diffusivity process. KW - random diffusivity KW - extremal values KW - maximum and range KW - diffusion KW - Brownian motion Y1 - 2021 U6 - https://doi.org/10.1088/1367-2630/abd313 SN - 1367-2630 VL - 23 PB - Dt. Physikalische Ges. CY - Bad Honnef ER - TY - JOUR A1 - Grebenkov, Denis S. A1 - Metzler, Ralf A1 - Oshanin, Gleb A1 - Dagdug, Leonardo A1 - Berezhkovskii, Alexander M. A1 - Skvortsov, Alexei T. T1 - Trapping of diffusing particles by periodic absorbing rings on a cylindrical tube JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr Y1 - 2019 U6 - https://doi.org/10.1063/1.5098390 SN - 0021-9606 SN - 1089-7690 VL - 150 IS - 20 PB - American Institute of Physics CY - Melville ER - TY - GEN A1 - Grebenkov, Denis S. A1 - Sposini, Vittoria A1 - Metzler, Ralf A1 - Oshanin, Gleb A1 - Seno, Flavio T1 - Exact distributions of the maximum and range of random diffusivity processes T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - We study the extremal properties of a stochastic process xt defined by the Langevin equation ẋₜ =√2Dₜ ξₜ, in which ξt is a Gaussian white noise with zero mean and Dₜ is a stochastic‘diffusivity’, defined as a functional of independent Brownian motion Bₜ.We focus on threechoices for the random diffusivity Dₜ: cut-off Brownian motion, Dₜt ∼ Θ(Bₜ), where Θ(x) is the Heaviside step function; geometric Brownian motion, Dₜ ∼ exp(−Bₜ); and a superdiffusive process based on squared Brownian motion, Dₜ ∼ B²ₜ. For these cases we derive exact expressions for the probability density functions of the maximal positive displacement and of the range of the process xₜ on the time interval ₜ ∈ (0, T).We discuss the asymptotic behaviours of the associated probability density functions, compare these against the behaviour of the corresponding properties of standard Brownian motion with constant diffusivity (Dₜ = D0) and also analyse the typical behaviour of the probability density functions which is observed for a majority of realisations of the stochastic diffusivity process. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1142 KW - random diffusivity KW - extremal values KW - maximum and range KW - diffusion KW - Brownian motion Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-503976 SN - 1866-8372 IS - 1142 ER - TY - GEN A1 - Grebenkov, Denis S. A1 - Metzler, Ralf A1 - Oshanin, Gleb T1 - A molecular relay race: sequential first-passage events to the terminal reaction centre in a cascade of diffusion controlled processes T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - We consider a sequential cascade of molecular first-reaction events towards a terminal reaction centre in which each reaction step is controlled by diffusive motion of the particles. The model studied here represents a typical reaction setting encountered in diverse molecular biology systems, in which, e.g. a signal transduction proceeds via a series of consecutive 'messengers': the first messenger has to find its respective immobile target site triggering a launch of the second messenger, the second messenger seeks its own target site and provokes a launch of the third messenger and so on, resembling a relay race in human competitions. For such a molecular relay race taking place in infinite one-, two- and three-dimensional systems, we find exact expressions for the probability density function of the time instant of the terminal reaction event, conditioned on preceding successful reaction events on an ordered array of target sites. The obtained expressions pertain to the most general conditions: number of intermediate stages and the corresponding diffusion coefficients, the sizes of the target sites, the distances between them, as well as their reactivities are arbitrary. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1159 KW - diffusion KW - reaction cascade KW - first passage time Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-521942 SN - 1866-8372 ER - TY - JOUR A1 - Grebenkov, Denis S. A1 - Metzler, Ralf A1 - Oshanin, Gleb T1 - Towards a full quantitative description of single-molecule reaction kinetics in biological cells JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - The first-passage time (FPT), i.e., the moment when a stochastic process reaches a given threshold value for the first time, is a fundamental mathematical concept with immediate applications. In particular, it quantifies the statistics of instances when biomolecules in a biological cell reach their specific binding sites and trigger cellular regulation. Typically, the first-passage properties are given in terms of mean first-passage times. However, modern experiments now monitor single-molecular binding-processes in living cells and thus provide access to the full statistics of the underlying first-passage events, in particular, inherent cell-to-cell fluctuations. We here present a robust explicit approach for obtaining the distribution of FPTs to a small partially reactive target in cylindrical-annulus domains, which represent typical bacterial and neuronal cell shapes. We investigate various asymptotic behaviours of this FPT distribution and show that it is typically very broad in many biological situations, thus, the mean FPT can differ from the most probable FPT by orders of magnitude. The most probable FPT is shown to strongly depend only on the starting position within the geometry and to be almost independent of the target size and reactivity. These findings demonstrate the dramatic relevance of knowing the full distribution of FPTs and thus open new perspectives for a more reliable description of many intracellular processes initiated by the arrival of one or few biomolecules to a small, spatially localised region inside the cell. Y1 - 2018 U6 - https://doi.org/10.1039/c8cp02043d SN - 1463-9076 SN - 1463-9084 VL - 20 IS - 24 SP - 16393 EP - 16401 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Cherstvy, Andrey G. A1 - Vinod, Deepak A1 - Aghion, Erez A1 - Sokolov, Igor M. A1 - Metzler, Ralf T1 - Scaled geometric Brownian motion features sub- or superexponential ensemble-averaged, but linear time-averaged mean-squared displacements JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - Various mathematical Black-Scholes-Merton-like models of option pricing employ the paradigmatic stochastic process of geometric Brownian motion (GBM). The innate property of such models and of real stock-market prices is the roughly exponential growth of prices with time [on average, in crisis-free times]. We here explore the ensemble- and time averages of a multiplicative-noise stochastic process with power-law-like time-dependent volatility, sigma(t) similar to t(alpha), named scaled GBM (SGBM). For SGBM, the mean-squared displacement (MSD) computed for an ensemble of statistically equivalent trajectories can grow faster than exponentially in time, while the time-averaged MSD (TAMSD)-based on a sliding-window averaging along a single trajectory-is always linear at short lag times Delta. The proportionality factor between these the two averages of the time series is Delta/T at short lag times, where T is the trajectory length, similarly to GBM. This discrepancy of the scaling relations and pronounced nonequivalence of the MSD and TAMSD at Delta/T << 1 is a manifestation of weak ergodicity breaking for standard GBM and for SGBM with s (t)-modulation, the main focus of our analysis. The analytical predictions for the MSD and mean TAMSD for SGBM are in quantitative agreement with the results of stochastic computer simulations. Y1 - 2021 U6 - https://doi.org/10.1103/PhysRevE.103.062127 SN - 2470-0045 SN - 2470-0053 VL - 103 IS - 6 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Xu, Pengbo A1 - Metzler, Ralf A1 - Wang, Wanli T1 - Infinite density and relaxation for Levy walks in an external potential BT - Hermite polynomial approach JF - Physical review N2 - Levy walks are continuous-time random-walk processes with a spatiotemporal coupling of jump lengths and waiting times. We here apply the Hermite polynomial method to study the behavior of LWs with power-law walking time density for four different cases. First we show that the known result for the infinite density of an unconfined, unbiased LW is consistently recovered. We then derive the asymptotic behavior of the probability density function (PDF) for LWs in a constant force field, and we obtain the corresponding qth-order moments. In a harmonic external potential we derive the relaxation dynamic of the LW. For the case of a Poissonian walking time an exponential relaxation behavior is shown to emerge. Conversely, a power-law decay is obtained when the mean walking time diverges. Finally, we consider the case of an unconfined, unbiased LW with decaying speed v(r ) = v0/./r. When the mean walking time is finite, a universal Gaussian law for the position-PDF of the walker is obtained explicitly. Y1 - 2022 U6 - https://doi.org/10.1103/PhysRevE.105.044118 SN - 2470-0045 SN - 2470-0053 VL - 105 IS - 4 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Vinod, Deepak A1 - Cherstvy, Andrey G. A1 - Wang, Wei A1 - Metzler, Ralf A1 - Sokolov, Igor M. T1 - Nonergodicity of reset geometric Brownian motion JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - We derive. the ensemble-and time-averaged mean-squared displacements (MSD, TAMSD) for Poisson-reset geometric Brownian motion (GBM), in agreement with simulations. We find MSD and TAMSD saturation for frequent resetting, quantify the spread of TAMSDs via the ergodicity-breaking parameter and compute distributions of prices. General MSD-TAMSD nonequivalence proves reset GBM nonergodic. Y1 - 2022 U6 - https://doi.org/10.1103/PhysRevE.105.L012106 SN - 2470-0045 SN - 2470-0053 VL - 105 IS - 1 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Chechkin, Aleksei V. A1 - Zaid, I. M. A1 - Lomholt, M. A. A1 - Sokolov, Igor M. A1 - Metzler, Ralf T1 - Bulk-mediated surface diffusion on a cylinder in the fast exchange limit JF - Mathematical modelling of natural phenomena N2 - In various biological systems and small scale technological applications particles transiently bind to a cylindrical surface. Upon unbinding the particles diffuse in the vicinal bulk before rebinding to the surface. Such bulk-mediated excursions give rise to an effective surface translation, for which we here derive and discuss the dynamic equations, including additional surface diffusion. We discuss the time evolution of the number of surface-bound particles, the effective surface mean squared displacement, and the surface propagator. In particular, we observe sub- and superdiffusive regimes. A plateau of the surface mean-squared displacement reflects a stalling of the surface diffusion at longer times. Finally, the corresponding first passage problem for the cylindrical geometry is analysed. KW - Bulk-mediated diffusion KW - anomalous diffusion KW - Levy flights KW - stochastic processes Y1 - 2013 U6 - https://doi.org/10.1051/mmnp/20138208 SN - 0973-5348 VL - 8 IS - 2 SP - 114 EP - 126 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Chechkin, Aleksei V. A1 - Zaid, Irwin M. A1 - Lomholt, Michael A. A1 - Sokolov, Igor M. A1 - Metzler, Ralf T1 - Bulk-mediated diffusion on a planar surface full solution JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - We consider the effective surface motion of a particle that intermittently unbinds from a planar surface and performs bulk excursions. Based on a random-walk approach, we derive the diffusion equations for surface and bulk diffusion including the surface-bulk coupling. From these exact dynamic equations, we analytically obtain the propagator of the effective surface motion. This approach allows us to deduce a superdiffusive, Cauchy-type behavior on the surface, together with exact cutoffs limiting the Cauchy form. Moreover, we study the long-time dynamics for the surface motion. Y1 - 2012 U6 - https://doi.org/10.1103/PhysRevE.86.041101 SN - 1539-3755 VL - 86 IS - 4 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Wang, Wei A1 - Seno, Flavio A1 - Sokolov, Igor M. A1 - Chechkin, Aleksei V. A1 - Metzler, Ralf T1 - Unexpected crossovers in correlated random-diffusivity processes JF - New Journal of Physics N2 - The passive and active motion of micron-sized tracer particles in crowded liquids and inside living biological cells is ubiquitously characterised by 'viscoelastic' anomalous diffusion, in which the increments of the motion feature long-ranged negative and positive correlations. While viscoelastic anomalous diffusion is typically modelled by a Gaussian process with correlated increments, so-called fractional Gaussian noise, an increasing number of systems are reported, in which viscoelastic anomalous diffusion is paired with non-Gaussian displacement distributions. Following recent advances in Brownian yet non-Gaussian diffusion we here introduce and discuss several possible versions of random-diffusivity models with long-ranged correlations. While all these models show a crossover from non-Gaussian to Gaussian distributions beyond some correlation time, their mean squared displacements exhibit strikingly different behaviours: depending on the model crossovers from anomalous to normal diffusion are observed, as well as a priori unexpected dependencies of the effective diffusion coefficient on the correlation exponent. Our observations of the non-universality of random-diffusivity viscoelastic anomalous diffusion are important for the analysis of experiments and a better understanding of the physical origins of 'viscoelastic yet non-Gaussian' diffusion. KW - diffusion KW - anomalous diffusion KW - non-Gaussianity KW - fractional Brownian motion Y1 - 2020 U6 - https://doi.org/10.1088/1367-2630/aba390 SN - 1367-2630 VL - 22 PB - Dt. Physikalische Ges. CY - Bad Honnef ER - TY - JOUR A1 - Chechkin, Aleksei V. A1 - Seno, Flavio A1 - Metzler, Ralf A1 - Sokolov, Igor M. T1 - Brownian yet Non-Gaussian Diffusion: From Superstatistics to Subordination of Diffusing Diffusivities JF - Physical review : X, Expanding access N2 - A growing number of biological, soft, and active matter systems are observed to exhibit normal diffusive dynamics with a linear growth of the mean-squared displacement, yet with a non-Gaussian distribution of increments. Based on the Chubinsky-Slater idea of a diffusing diffusivity, we here establish and analyze a minimal model framework of diffusion processes with fluctuating diffusivity. In particular, we demonstrate the equivalence of the diffusing diffusivity process with a superstatistical approach with a distribution of diffusivities, at times shorter than the diffusivity correlation time. At longer times, a crossover to a Gaussian distribution with an effective diffusivity emerges. Specifically, we establish a subordination picture of Brownian but non-Gaussian diffusion processes, which can be used for a wide class of diffusivity fluctuation statistics. Our results are shown to be in excellent agreement with simulations and numerical evaluations. Y1 - 2017 U6 - https://doi.org/10.1103/PhysRevX.7.021002 SN - 2160-3308 VL - 7 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Wang, Wei A1 - Cherstvy, Andrey G. A1 - Metzler, Ralf A1 - Sokolov, Igor M. T1 - Restoring ergodicity of stochastically reset anomalous-diffusion processes JF - Physical Review Research N2 - How do different reset protocols affect ergodicity of a diffusion process in single-particle-tracking experiments? We here address the problem of resetting of an arbitrary stochastic anomalous-diffusion process (ADP) from the general mathematical points of view and assess ergodicity of such reset ADPs for an arbitrary resetting protocol. The process of stochastic resetting describes the events of the instantaneous restart of a particle’s motion via randomly distributed returns to a preset initial position (or a set of those). The waiting times of such resetting events obey the Poissonian, Gamma, or more generic distributions with specified conditions regarding the existence of moments. Within these general approaches, we derive general analytical results and support them by computer simulations for the behavior of the reset mean-squared displacement (MSD), the new reset increment-MSD (iMSD), and the mean reset time-averaged MSD (TAMSD). For parental nonreset ADPs with the MSD(t)∝ tμ we find a generic behavior and a switch of the short-time growth of the reset iMSD and mean reset TAMSDs from ∝ _μ for subdiffusive to ∝ _1 for superdiffusive reset ADPs. The critical condition for a reset ADP that recovers its ergodicity is found to be more general than that for the nonequilibrium stationary state, where obviously the iMSD and the mean TAMSD are equal. The consideration of the new statistical quantifier, the iMSD—as compared to the standard MSD—restores the ergodicity of an arbitrary reset ADP in all situations when the μth moment of the waiting-time distribution of resetting events is finite. Potential applications of these new resetting results are, inter alia, in the area of biophysical and soft-matter systems. Y1 - 2022 U6 - https://doi.org/10.1103/PhysRevResearch.4.013161 SN - 2643-1564 VL - 4 SP - 013161-1 EP - 013161-13 PB - American Physical Society CY - College Park, Maryland, United States ET - 1 ER - TY - JOUR A1 - Vinod, Deepak A1 - Cherstvy, Andrey G. A1 - Metzler, Ralf A1 - Sokolov, Igor M. T1 - Time-averaging and nonergodicity of reset geometric Brownian motion with drift JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - How do near-bankruptcy events in the past affect the dynamics of stock-market prices in the future? Specifically, what are the long-time properties of a time-local exponential growth of stock-market prices under the influence of stochastically occurring economic crashes? Here, we derive the ensemble- and time-averaged properties of the respective "economic" or geometric Brownian motion (GBM) with a nonzero drift exposed to a Poissonian constant-rate price-restarting process of "resetting." We examine-based both on thorough analytical calculations and on findings from systematic stochastic computer simulations-the general situation of reset GBM with a nonzero [positive] drift and for all special cases emerging for varying parameters of drift, volatility, and reset rate in the model. We derive and summarize all short- and long-time dependencies for the mean-squared displacement (MSD), the variance, and the mean time-averaged MSD (TAMSD) of the process of Poisson-reset GBM under the conditions of both rare and frequent resetting. We consider three main regions of model parameters and categorize the crossovers between different functional behaviors of the statistical quantifiers of this process. The analytical relations are fully supported by the results of computer simulations. In particular, we obtain that Poisson-reset GBM is a nonergodic stochastic process, with generally MSD(Delta) not equal TAMSD(Delta) and Variance(Delta) not equal TAMSD(Delta) at short lag times Delta and for long trajectory lengths T. We investigate the behavior of the ergodicity-breaking parameter in each of the three regions of parameters and examine its dependence on the rate of reset at Delta/T << 1. Applications of these theoretical results to the analysis of prices of reset-containing options are pertinent. Y1 - 2022 U6 - https://doi.org/10.1103/PhysRevE.106.034137 SN - 2470-0045 SN - 2470-0053 VL - 106 IS - 3 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Xu, Pengbo A1 - Zhou, Tian A1 - Metzler, Ralf A1 - Deng, Weihua T1 - Stochastic harmonic trapping of a Lévy walk BT - transport and first-passage dynamics under soft resetting strategies JF - New journal of physics : the open-access journal for physics / Deutsche Physikalische Gesellschaft ; IOP, Institute of Physics N2 - We introduce and study a Lévy walk (LW) model of particle spreading with a finite propagation speed combined with soft resets, stochastically occurring periods in which an harmonic external potential is switched on and forces the particle towards a specific position. Soft resets avoid instantaneous relocation of particles that in certain physical settings may be considered unphysical. Moreover, soft resets do not have a specific resetting point but lead the particle towards a resetting point by a restoring Hookean force. Depending on the exact choice for the LW waiting time density and the probability density of the periods when the harmonic potential is switched on, we demonstrate a rich emerging response behaviour including ballistic motion and superdiffusion. When the confinement periods of the soft-reset events are dominant, we observe a particle localisation with an associated non-equilibrium steady state. In this case the stationary particle probability density function turns out to acquire multimodal states. Our derivations are based on Markov chain ideas and LWs with multiple internal states, an approach that may be useful and flexible for the investigation of other generalised random walks with soft and hard resets. The spreading efficiency of soft-rest LWs is characterised by the first-passage time statistic. KW - diffusion KW - anomalous diffusion KW - stochastic resetting KW - Levy walks Y1 - 2022 U6 - https://doi.org/10.1088/1367-2630/ac5282 SN - 1367-2630 VL - 24 IS - 3 SP - 1 EP - 28 PB - Deutsche Physikalische Gesellschaft CY - Bad Honnef ER - TY - GEN A1 - Wang, Wei A1 - Cherstvy, Andrey G. A1 - Metzler, Ralf A1 - Sokolov, Igor M. T1 - Restoring ergodicity of stochastically reset anomalous-diffusion processes T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - How do different reset protocols affect ergodicity of a diffusion process in single-particle-tracking experiments? We here address the problem of resetting of an arbitrary stochastic anomalous-diffusion process (ADP) from the general mathematical points of view and assess ergodicity of such reset ADPs for an arbitrary resetting protocol. The process of stochastic resetting describes the events of the instantaneous restart of a particle’s motion via randomly distributed returns to a preset initial position (or a set of those). The waiting times of such resetting events obey the Poissonian, Gamma, or more generic distributions with specified conditions regarding the existence of moments. Within these general approaches, we derive general analytical results and support them by computer simulations for the behavior of the reset mean-squared displacement (MSD), the new reset increment-MSD (iMSD), and the mean reset time-averaged MSD (TAMSD). For parental nonreset ADPs with the MSD(t)∝ tμ we find a generic behavior and a switch of the short-time growth of the reset iMSD and mean reset TAMSDs from ∝ _μ for subdiffusive to ∝ _1 for superdiffusive reset ADPs. The critical condition for a reset ADP that recovers its ergodicity is found to be more general than that for the nonequilibrium stationary state, where obviously the iMSD and the mean TAMSD are equal. The consideration of the new statistical quantifier, the iMSD—as compared to the standard MSD—restores the ergodicity of an arbitrary reset ADP in all situations when the μth moment of the waiting-time distribution of resetting events is finite. Potential applications of these new resetting results are, inter alia, in the area of biophysical and soft-matter systems. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1261 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-560377 SN - 1866-8372 SP - 013161-1 EP - 013161-13 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - GEN A1 - Wang, Wei A1 - Seno, Flavio A1 - Sokolov, Igor M. A1 - Chechkin, Aleksei V. A1 - Metzler, Ralf T1 - Unexpected crossovers in correlated random-diffusivity processes N2 - The passive and active motion of micron-sized tracer particles in crowded liquids and inside living biological cells is ubiquitously characterised by 'viscoelastic' anomalous diffusion, in which the increments of the motion feature long-ranged negative and positive correlations. While viscoelastic anomalous diffusion is typically modelled by a Gaussian process with correlated increments, so-called fractional Gaussian noise, an increasing number of systems are reported, in which viscoelastic anomalous diffusion is paired with non-Gaussian displacement distributions. Following recent advances in Brownian yet non-Gaussian diffusion we here introduce and discuss several possible versions of random-diffusivity models with long-ranged correlations. While all these models show a crossover from non-Gaussian to Gaussian distributions beyond some correlation time, their mean squared displacements exhibit strikingly different behaviours: depending on the model crossovers from anomalous to normal diffusion are observed, as well as a priori unexpected dependencies of the effective diffusion coefficient on the correlation exponent. Our observations of the non-universality of random-diffusivity viscoelastic anomalous diffusion are important for the analysis of experiments and a better understanding of the physical origins of 'viscoelastic yet non-Gaussian' diffusion. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1006 KW - diffusion KW - anomalous diffusion KW - non-Gaussianity KW - fractional Brownian motion Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-480049 SN - 1866-8372 IS - 1006 ER - TY - GEN A1 - Chechkin, Aleksei V. A1 - Zaid, Irwin M. A1 - Lomholt, Michael A. A1 - Sokolov, Igor M. A1 - Metzler, Ralf T1 - Bulk-mediated surface diffusion on a cylinder in the fast exchange limit T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - In various biological systems and small scale technological applications particles transiently bind to a cylindrical surface. Upon unbinding the particles diffuse in the vicinal bulk before rebinding to the surface. Such bulk-mediated excursions give rise to an effective surface translation, for which we here derive and discuss the dynamic equations, including additional surface diffusion. We discuss the time evolution of the number of surface-bound particles, the effective surface mean squared displacement, and the surface propagator. In particular, we observe sub- and superdiffusive regimes. A plateau of the surface mean-squared displacement reflects a stalling of the surface diffusion at longer times. Finally, the corresponding first passage problem for the cylindrical geometry is analysed. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 593 KW - Bulk-mediated diffusion; KW - anomalous diffusion KW - Levy flights KW - stochastic processes Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-415480 SN - 1866-8372 IS - 593 SP - 114 EP - 126 ER - TY - JOUR A1 - Emanuel, Marc D. A1 - Cherstvy, Andrey G. A1 - Metzler, Ralf A1 - Gompper, Gerhard T1 - Buckling transitions and soft-phase invasion of two-component icosahedral shells JF - Physical review / publ. by The American Physical Society. E, Statistical, nonlinear, and soft matter physics N2 - What is the optimal distribution of two types of crystalline phases on the surface of icosahedral shells, such as of many viral capsids? We here investigate the distribution of a thin layer of soft material on a crystalline convex icosahedral shell. We demonstrate how the shapes of spherical viruses can be understood from the perspective of elasticity theory of thin two-component shells. We develop a theory of shape transformations of an icosahedral shell upon addition of a softer, but still crystalline, material onto its surface. We show how the soft component "invades" the regions with the highest elastic energy and stress imposed by the 12 topological defects on the surface. We explore the phase diagram as a function of the surface fraction of the soft material, the shell size, and the incommensurability of the elastic moduli of the rigid and soft phases. We find that, as expected, progressive filling of the rigid shell by the soft phase starts from the most deformed regions of the icosahedron. With a progressively increasing soft-phase coverage, the spherical segments of domes are filled first (12 vertices of the shell), then the cylindrical segments connecting the domes (30 edges) are invaded, and, ultimately, the 20 flat faces of the icosahedral shell tend to be occupied by the soft material. We present a detailed theoretical investigation of the first two stages of this invasion process and develop a model of morphological changes of the cone structure that permits noncircular cross sections. In conclusion, we discuss the biological relevance of some structures predicted from our calculations, in particular for the shape of viral capsids. Y1 - 2020 U6 - https://doi.org/10.1103/PhysRevE.102.062104 SN - 2470-0045 SN - 2470-0053 SN - 2470-0061 SN - 1538-4519 VL - 102 IS - 6 PB - Woodbury CY - New York ER - TY - JOUR A1 - Li, Hua A1 - Xu, Yong A1 - Li, Yongge A1 - Metzler, Ralf T1 - Transition path dynamics across rough inverted parabolic potential barrier JF - The European physical journal : Plus N2 - Transition path dynamics have been widely studied in chemical, physical, and technological systems. Mostly, the transition path dynamics is obtained for smooth barrier potentials, for instance, generic inverse-parabolic shapes. We here present analytical results for the mean transition path time, the distribution of transition path times, the mean transition path velocity, and the mean transition path shape in a rough inverted parabolic potential function under the driving of Gaussian white noise. These are validated against extensive simulations using the forward flux sampling scheme in parallel computations. We observe how precisely the potential roughness, the barrier height, and the noise intensity contribute to the particle transition in the rough inverted barrier potential. Y1 - 2020 U6 - https://doi.org/10.1140/epjp/s13360-020-00752-7 SN - 2190-5444 VL - 135 IS - 9 PB - Springer CY - Berlin ; Heidelberg ER -