TY - JOUR A1 - Sereshki, L. E. A1 - Lomholt, M. A. A1 - Metzler, Ralf T1 - A solution to the subdiffusion-efficiency paradox inactive states enhance reaction efficiency at subdiffusion conditions in living cells JF - epl : a letters journal exploring the frontiers of physics N2 - Macromolecular crowding in living biological cells effects subdiffusion of larger biomolecules such as proteins and enzymes. Mimicking this subdiffusion in terms of random walks on a critical percolation cluster, we here present a case study of EcoRV restriction enzymes involved in vital cellular defence. We show that due to its so far elusive propensity to an inactive state the enzyme avoids non-specific binding and remains well-distributed in the bulk cytoplasm of the cell. Despite the reduced volume exploration capability of subdiffusion processes, this mechanism guarantees a high efficiency of the enzyme. By variation of the non-specific binding constant and the bond occupation probability on the percolation network, we demonstrate that reduced nonspecific binding are beneficial for efficient subdiffusive enzyme activity even in relatively small bacteria cells. Our results corroborate a more local picture of cellular regulation. Y1 - 2012 U6 - https://doi.org/10.1209/0295-5075/97/20008 SN - 0295-5075 VL - 97 IS - 2 PB - EDP Sciences CY - Mulhouse ER - TY - JOUR A1 - Ghosh, Surya K. A1 - Cherstvy, Andrey G. A1 - Metzler, Ralf T1 - Deformation propagation in responsive polymer network films JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr N2 - We study the elastic deformations in a cross-linked polymer network film triggered by the binding of submicron particles with a sticky surface, mimicking the interactions of viral pathogens with thin films of stimulus-responsive polymeric materials such as hydrogels. From extensive Langevin Dynamics simulations we quantify how far the network deformations propagate depending on the elasticity parameters of the network and the adhesion strength of the particles. We examine the dynamics of the collective area shrinkage of the network and obtain some simple relations for the associated characteristic decay lengths. A detailed analysis elucidates how the elastic energy of the network is distributed between stretching and compression modes in response to the particle binding. We also examine the force-distance curves of the repulsion or attraction interactions for a pair of sticky particles in the polymer network film as a function of the particle-particle separation. The results of this computational study provide new insight into collective phenomena in soft polymer network films and may, in particular, be applied to applications for visual detection of pathogens such as viruses via a macroscopic response of thin films of cross-linked hydrogels. (C) 2014 AIP Publishing LLC. Y1 - 2014 U6 - https://doi.org/10.1063/1.4893056 SN - 0021-9606 SN - 1089-7690 VL - 141 IS - 7 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Goychuk, Igor A1 - Kharchenko, Vasyl O. A1 - Metzler, Ralf T1 - Molecular motors pulling cargos in the viscoelastic cytosol: how power strokes beat subdiffusion JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - The discovery of anomalous diffusion of larger biopolymers and submicron tracers such as endogenous granules, organelles, or virus capsids in living cells, attributed to the viscoelastic nature of the cytoplasm, provokes the question whether this complex environment equally impacts the active intracellular transport of submicron cargos by molecular motors such as kinesins: does the passive anomalous diffusion of free cargo always imply its anomalously slow active transport by motors, the mean transport distance along microtubule growing sublinearly rather than linearly in time? Here we analyze this question within the widely used two-state Brownian ratchet model of kinesin motors based on the continuous-state diffusion along microtubules driven by a flashing binding potential, where the cargo particle is elastically attached to the motor. Depending on the cargo size, the loading force, the amplitude of the binding potential, the turnover frequency of the molecular motor enzyme, and the linker stiffness we demonstrate that the motor transport may turn out either normal or anomalous, as indeed measured experimentally. We show how a highly efficient normal active transport mediated by motors may emerge despite the passive anomalous diffusion of the cargo, and study the intricate effects of the elastic linker. Under different, well specified conditions the microtubule-based motor transport becomes anomalously slow and thus significantly less efficient. Y1 - 2014 U6 - https://doi.org/10.1039/c4cp01234h SN - 1463-9076 SN - 1463-9084 VL - 16 IS - 31 SP - 16524 EP - 16535 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Pulkkinen, Otto A1 - Metzler, Ralf T1 - Variance-corrected Michaelis-Menten equation predicts transient rates of single-enzyme reactions and response times in bacterial gene-regulation JF - Scientific reports N2 - Many chemical reactions in biological cells occur at very low concentrations of constituent molecules. Thus, transcriptional gene-regulation is often controlled by poorly expressed transcription-factors, such as E. coli lac repressor with few tens of copies. Here we study the effects of inherent concentration fluctuations of substrate-molecules on the seminal Michaelis-Menten scheme of biochemical reactions. We present a universal correction to the Michaelis-Menten equation for the reaction-rates. The relevance and validity of this correction for enzymatic reactions and intracellular gene-regulation is demonstrated. Our analytical theory and simulation results confirm that the proposed variance-corrected Michaelis-Menten equation predicts the rate of reactions with remarkable accuracy even in the presence of large non-equilibrium concentration fluctuations. The major advantage of our approach is that it involves only the mean and variance of the substrate-molecule concentration. Our theory is therefore accessible to experiments and not specific to the exact source of the concentration fluctuations. Y1 - 2015 U6 - https://doi.org/10.1038/srep17820 SN - 2045-2322 VL - 5 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Cherstvy, Andrey G. A1 - Chechkin, Aleksei V. A1 - Metzler, Ralf T1 - Particle invasion, survival, and non-ergodicity in 2D diffusion processes with space-dependent diffusivity JF - Soft matter N2 - We study the thermal Markovian diffusion of tracer particles in a 2D medium with spatially varying diffusivity D(r), mimicking recently measured, heterogeneous maps of the apparent diffusion coefficient in biological cells. For this heterogeneous diffusion process (HDP) we analyse the mean squared displacement (MSD) of the tracer particles, the time averaged MSD, the spatial probability density function, and the first passage time dynamics from the cell boundary to the nucleus. Moreover we examine the non-ergodic properties of this process which are important for the correct physical interpretation of time averages of observables obtained from single particle tracking experiments. From extensive computer simulations of the 2D stochastic Langevin equation we present an in-depth study of this HDP. In particular, we find that the MSDs along the radial and azimuthal directions in a circular domain obey anomalous and Brownian scaling, respectively. We demonstrate that the time averaged MSD stays linear as a function of the lag time and the system thus reveals a weak ergodicity breaking. Our results will enable one to rationalise the diffusive motion of larger tracer particles such as viruses or submicron beads in biological cells. Y1 - 2014 U6 - https://doi.org/10.1039/c3sm52846d SN - 1744-683X SN - 1744-6848 VL - 10 IS - 10 SP - 1591 EP - 1601 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Sposini, Vittoria A1 - Chechkin, Aleksei V. A1 - Seno, Flavio A1 - Pagnini, Gianni A1 - Metzler, Ralf T1 - Random diffusivity from stochastic equations BT - comparison of two models for Brownian yet non-Gaussian diffusion JF - New Journal of Physics N2 - A considerable number of systems have recently been reported in which Brownian yet non-Gaussian dynamics was observed. These are processes characterised by a linear growth in time of the mean squared displacement, yet the probability density function of the particle displacement is distinctly non-Gaussian, and often of exponential(Laplace) shape. This apparently ubiquitous behaviour observed in very different physical systems has been interpreted as resulting from diffusion in inhomogeneous environments and mathematically represented through a variable, stochastic diffusion coefficient. Indeed different models describing a fluctuating diffusivity have been studied. Here we present a new view of the stochastic basis describing time dependent random diffusivities within a broad spectrum of distributions. Concretely, our study is based on the very generic class of the generalised Gamma distribution. Two models for the particle spreading in such random diffusivity settings are studied. The first belongs to the class of generalised grey Brownian motion while the second follows from the idea of diffusing diffusivities. The two processes exhibit significant characteristics which reproduce experimental results from different biological and physical systems. We promote these two physical models for the description of stochastic particle motion in complex environments. Y1 - 2018 U6 - https://doi.org/10.1088/1367-2630/aab696 SN - 1367-2630 SP - 1 EP - 33 PB - Deutsche Physikalische Gesellschaft / Institute of Physics CY - Bad Honnef und London ER - TY - JOUR A1 - Ślęzak, Jakub A1 - Metzler, Ralf A1 - Magdziarz, Marcin T1 - Superstatistical generalised Langevin equation BT - non-Gaussian viscoelastic anomalous diffusion JF - New Journal of Physics N2 - Recent advances in single particle tracking and supercomputing techniques demonstrate the emergence of normal or anomalous, viscoelastic diffusion in conjunction with non-Gaussian distributions in soft, biological, and active matter systems. We here formulate a stochastic model based on a generalised Langevin equation in which non-Gaussian shapes of the probability density function and normal or anomalous diffusion have a common origin, namely a random parametrisation of the stochastic force. We perform a detailed analysis demonstrating how various types of parameter distributions for the memory kernel result in exponential, power law, or power-log law tails of the memory functions. The studied system is also shown to exhibit a further unusual property: the velocity has a Gaussian one point probability density but non-Gaussian joint distributions. This behaviour is reflected in the relaxation from a Gaussian to a non-Gaussian distribution observed for the position variable. We show that our theoretical results are in excellent agreement with stochastic simulations. KW - anomalous diffusion KW - generalised langevin equation KW - superstatistics KW - non-Gaussian diffusion Y1 - 2018 U6 - https://doi.org/10.1088/1367-2630/aaa3d4 SN - 1367-2630 VL - 20 IS - 023026 SP - 1 EP - 25 PB - Deutsche Physikalische Gesellschaft / Institute of Physics CY - Bad Honnef und London ER - TY - JOUR A1 - Palyulin, Vladimir V A1 - Blackburn, George A1 - Lomholt, Michael A A1 - Watkins, Nicholas W A1 - Metzler, Ralf A1 - Klages, Rainer A1 - Chechkin, Aleksei V. T1 - First passage and first hitting times of Lévy flights and Lévy walks JF - New Journal of Physics N2 - For both Lévy flight and Lévy walk search processes we analyse the full distribution of first-passage and first-hitting (or first-arrival) times. These are, respectively, the times when the particle moves across a point at some given distance from its initial position for the first time, or when it lands at a given point for the first time. For Lévy motions with their propensity for long relocation events and thus the possibility to jump across a given point in space without actually hitting it ('leapovers'), these two definitions lead to significantly different results. We study the first-passage and first-hitting time distributions as functions of the Lévy stable index, highlighting the different behaviour for the cases when the first absolute moment of the jump length distribution is finite or infinite. In particular we examine the limits of short and long times. Our results will find their application in the mathematical modelling of random search processes as well as computer algorithms. KW - Lévy flights KW - Lévy walks KW - first-passage time KW - first-hitting time Y1 - 2019 U6 - https://doi.org/10.1088/1367-2630/ab41bb SN - 1367-2630 VL - 21 PB - Dt. Physikalische Ges. CY - Bad Honnef ER - TY - JOUR A1 - Jeon, Jae-Hyung A1 - Javanainen, Matti A1 - Martinez-Seara, Hector A1 - Metzler, Ralf A1 - Vattulainen, Ilpo T1 - Protein Crowding in Lipid Bilayers Gives Rise to Non-Gaussian Anomalous Lateral Diffusion of Phospholipids and Proteins JF - Physical review : X, Expanding access N2 - Biomembranes are exceptionally crowded with proteins with typical protein-to-lipid ratios being around 1:50 - 1:100. Protein crowding has a decisive role in lateral membrane dynamics as shown by recent experimental and computational studies that have reported anomalous lateral diffusion of phospholipids and membrane proteins in crowded lipid membranes. Based on extensive simulations and stochastic modeling of the simulated trajectories, we here investigate in detail how increasing crowding by membrane proteins reshapes the stochastic characteristics of the anomalous lateral diffusion in lipid membranes. We observe that correlated Gaussian processes of the fractional Langevin equation type, identified as the stochastic mechanism behind lipid motion in noncrowded bilayer, no longer adequately describe the lipid and protein motion in crowded but otherwise identical membranes. It turns out that protein crowding gives rise to a multifractal, non-Gaussian, and spatiotemporally heterogeneous anomalous lateral diffusion on time scales from nanoseconds to, at least, tens of microseconds. Our investigation strongly suggests that the macromolecular complexity and spatiotemporal membrane heterogeneity in cellular membranes play critical roles in determining the stochastic nature of the lateral diffusion and, consequently, the associated dynamic phenomena within membranes. Clarifying the exact stochastic mechanism for various kinds of biological membranes is an important step towards a quantitative understanding of numerous intramembrane dynamic phenomena. Y1 - 2016 U6 - https://doi.org/10.1103/PhysRevX.6.021006 SN - 2160-3308 VL - 6 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Godec, Aljaz A1 - Metzler, Ralf T1 - First passage time distribution in heterogeneity controlled kinetics: going beyond the mean first passage time JF - Scientific reports N2 - The first passage is a generic concept for quantifying when a random quantity such as the position of a diffusing molecule or the value of a stock crosses a preset threshold (target) for the first time. The last decade saw an enlightening series of new results focusing mostly on the so-called mean and global first passage time (MFPT and GFPT, respectively) of such processes. Here we push the understanding of first passage processes one step further. For a simple heterogeneous system we derive rigorously the complete distribution of first passage times (FPTs). Our results demonstrate that the typical FPT significantly differs from the MFPT, which corresponds to the long time behaviour of the FPT distribution. Conversely, the short time behaviour is shown to correspond to trajectories connecting directly from the initial value to the target. Remarkably, we reveal a previously overlooked third characteristic time scale of the first passage dynamics mirroring brief excursion away from the target. Y1 - 2016 U6 - https://doi.org/10.1038/srep20349 SN - 2045-2322 VL - 6 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Ghosh, Surya K. A1 - Cherstvy, Andrey G. A1 - Petrov, Eugene P. A1 - Metzler, Ralf T1 - Interactions of rod-like particles on responsive elastic sheets JF - Soft matter N2 - What are the physical laws of the mutual interactions of objects bound to cell membranes, such as various membrane proteins or elongated virus particles? To rationalise this, we here investigate by extensive computer simulations mutual interactions of rod-like particles adsorbed on the surface of responsive elastic two-dimensional sheets. Specifically, we quantify sheet deformations as a response to adhesion of such filamentous particles. We demonstrate that tip-to-tip contacts of rods are favoured for relatively soft sheets, while side-by-side contacts are preferred for stiffer elastic substrates. These attractive orientation-dependent substrate-mediated interactions between the rod-like particles on responsive sheets can drive their aggregation and self-assembly. The optimal orientation of the membrane-bound rods is established via responding to the elastic energy profiles created around the particles. We unveil the phase diagramme of attractive-repulsive rod-rod interactions in the plane of their separation and mutual orientation. Applications of our results to other systems featuring membrane-associated particles are also discussed. Y1 - 2016 U6 - https://doi.org/10.1039/c6sm01522k SN - 1744-683X SN - 1744-6848 VL - 12 SP - 7908 EP - 7919 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - de Carvalho, Sidney J. A1 - Metzler, Ralf A1 - Cherstvy, Andrey G. T1 - Critical adsorption of polyelectrolytes onto planar and convex highly charged surfaces: the nonlinear Poisson-Boltzmann approach JF - NEW JOURNAL OF PHYSICS N2 - We study the adsorption-desorption transition of polyelectrolyte chains onto planar, cylindrical and spherical surfaces with arbitrarily high surface charge densities by massive Monte Carlo computer simulations. We examine in detail how the well known scaling relations for the threshold transition demarcating the adsorbed and desorbed domains of a polyelectrolyte near weakly charged surfaces-are altered for highly charged interfaces. In virtue of high surface potentials and large surface charge densities, the Debye-Huckel approximation is often not feasible and the nonlinear Poisson-Boltzmann approach should be implemented. At low salt conditions, for instance, the electrostatic potential from the nonlinear Poisson-Boltzmann equation is smaller than the Debye-Huckel result, such that the required critical surface charge density for polyelectrolyte adsorption sigma(c) increases. The nonlinear relation between the surface charge density and electrostatic potential leads to a sharply increasing critical surface charge density with growing ionic strength, imposing an additional limit to the critical salt concentration above which no polyelectrolyte adsorption occurs at all. We contrast our simulations findings with the known scaling results for weak critical polyelectrolyte adsorption onto oppositely charged surfaces for the three standard geometries. Finally, we discuss some applications of our results for some physical-chemical and biophysical systems. KW - polyelectrolyte adsorption KW - electrostatic interactions KW - critical phenomena KW - Debye screening Y1 - 2016 U6 - https://doi.org/10.1088/1367-2630/18/8/083037 SN - 1367-2630 VL - 18 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Schwarzl, Maria A1 - Godec, Aljaz A1 - Oshanin, Gleb A1 - Metzler, Ralf T1 - A single predator charging a herd of prey: effects of self volume and predator-prey decision-making JF - Journal of physics : A, Mathematical and theoretical N2 - We study the degree of success of a single predator hunting a herd of prey on a two-dimensional square lattice landscape. We explicitly consider the self volume of the prey restraining their dynamics on the lattice. The movement of both predator and prey is chosen to include an intelligent, decision making step based on their respective sighting ranges, the radius in which they can detect the other species (prey cannot recognise each other besides the self volume interaction): after spotting each other the motion of prey and predator turns from a nearest neighbour random walk into directed escape or chase, respectively. We consider a large range of prey densities and sighting ranges and compute the mean first passage time for a predator to catch a prey as well as characterise the effective dynamics of the hunted prey. We find that the prey's sighting range dominates their life expectancy and the predator profits more from a bad eyesight of the prey than from his own good eye sight. We characterise the dynamics in terms of the mean distance between the predator and the nearest prey. It turns out that effectively the dynamics of this distance coordinate can be captured in terms of a simple Ornstein–Uhlenbeck picture. Reducing the many-body problem to a simple two-body problem by imagining predator and nearest prey to be connected by an effective Hookean bond, all features of the model such as prey density and sighting ranges merge into the effective binding constant. KW - first passage process KW - diffusion KW - predator-prey model Y1 - 2016 U6 - https://doi.org/10.1088/1751-8113/49/22/225601 SN - 1751-8113 SN - 1751-8121 VL - 49 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Godec, Aljaz A1 - Metzler, Ralf T1 - Universal Proximity Effect in Target Search Kinetics in the Few-Encounter Limit JF - Physical review : X, Expanding access N2 - When does a diffusing particle reach its target for the first time? This first-passage time (FPT) problem is central to the kinetics of molecular reactions in chemistry and molecular biology. Here, we explain the behavior of smooth FPT densities, for which all moments are finite, and demonstrate universal yet generally non-Poissonian long-time asymptotics for a broad variety of transport processes. While Poisson-like asymptotics arise generically in the presence of an effective repulsion in the immediate vicinity of the target, a time-scale separation between direct and reflected indirect trajectories gives rise to a universal proximity effect: Direct paths, heading more or less straight from the point of release to the target, become typical and focused, with a narrow spread of the corresponding first-passage times. Conversely, statistically dominant indirect paths exploring the entire system tend to be massively dissimilar. The initial distance to the target particularly impacts gene regulatory or competitive stochastic processes, for which few binding events often determine the regulatory outcome. The proximity effect is independent of details of the transport, highlighting the robust character of the FPT features uncovered here. Y1 - 2016 U6 - https://doi.org/10.1103/PhysRevX.6.041037 SN - 2160-3308 VL - 6 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Kruesemann, Henning A1 - Schwarzl, Richard A1 - Metzler, Ralf T1 - Ageing Scher-Montroll Transport JF - Transport in Porous Media N2 - We study the properties of ageing Scher-Montroll transport in terms of a biased subdiffusive continuous time random walk in which the waiting times between consecutive jumps of the charge carriers are distributed according to the power law probability with . As we show, the dynamical properties of the Scher-Montroll transport depend on the ageing time span between the initial preparation of the system and the start of the observation. The Scher-Montroll transport theory was originally shown to describe the photocurrent in amorphous solids in the presence of an external electric field, but it has since been used in many other fields of physical sciences, in particular also in the geophysical context for the description of the transport of tracer particles in subsurface aquifers. In the absence of ageing () the photocurrent of the classical Scher-Montroll model or the breakthrough curves in the groundwater context exhibit a crossover between two power law regimes in time with the scaling exponents and . In the presence of ageing a new power law regime and an initial plateau regime of the current emerge. We derive the different power law regimes and crossover times of the ageing Scher-Montroll transport and show excellent agreement with simulations of the process. Experimental data of ageing Scher-Montroll transport in polymeric semiconductors are shown to agree well with the predictions of our theory. KW - Anomalous diffusion KW - Ageing KW - Scher-Montroll transport Y1 - 2016 U6 - https://doi.org/10.1007/s11242-016-0686-y SN - 0169-3913 SN - 1573-1634 VL - 115 SP - 327 EP - 344 PB - Springer CY - New York ER - TY - JOUR A1 - Cherstvy, Andrey G. A1 - Metzler, Ralf T1 - Anomalous diffusion in time-fluctuating non-stationary diffusivity landscapes JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - We investigate the ensemble and time averaged mean squared displacements for particle diffusion in a simple model for disordered media by assuming that the local diffusivity is both fluctuating in time and has a deterministic average growth or decay in time. In this study we compare computer simulations of the stochastic Langevin equation for this random diffusion process with analytical results. We explore the regimes of normal Brownian motion as well as anomalous diffusion in the sub- and superdiffusive regimes. We also consider effects of the inertial term on the particle motion. The investigation of the resulting diffusion is performed for unconfined and confined motion. Y1 - 2016 U6 - https://doi.org/10.1039/c6cp03101c SN - 1463-9076 SN - 1463-9084 VL - 18 SP - 23840 EP - 23852 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Godec, Aljaz A1 - Metzler, Ralf T1 - Active transport improves the precision of linear long distance molecular signalling JF - Journal of physics : A, Mathematical and theoretical N2 - Molecular signalling in living cells occurs at low copy numbers and is thereby inherently limited by the noise imposed by thermal diffusion. The precision at which biochemical receptors can count signalling molecules is intimately related to the noise correlation time. In addition to passive thermal diffusion, messenger RNA and vesicle-engulfed signalling molecules can transiently bind to molecular motors and are actively transported across biological cells. Active transport is most beneficial when trafficking occurs over large distances, for instance up to the order of 1 metre in neurons. Here we explain how intermittent active transport allows for faster equilibration upon a change in concentration triggered by biochemical stimuli. Moreover, we show how intermittent active excursions induce qualitative changes in the noise in effectively one-dimensional systems such as dendrites. Thereby they allow for significantly improved signalling precision in the sense of a smaller relative deviation in the concentration read-out by the receptor. On the basis of linear response theory we derive the exact mean field precision limit for counting actively transported molecules. We explain how intermittent active excursions disrupt the recurrence in the molecular motion, thereby facilitating improved signalling accuracy. Our results provide a deeper understanding of how recurrence affects molecular signalling precision in biological cells and novel medical-diagnostic devices. KW - noise in biochemical signalling KW - Brownian motion KW - active transport KW - linear response theory KW - fluctuation-dissipation theorem KW - generalised Langevin equation KW - recurrence Y1 - 2016 U6 - https://doi.org/10.1088/1751-8113/49/36/364001 SN - 1751-8113 SN - 1751-8121 VL - 49 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Palyulin, Vladimir V. A1 - Chechkin, Aleksei V. A1 - Klages, Rainer A1 - Metzler, Ralf T1 - Search reliability and search efficiency of combined Levy-Brownian motion: long relocations mingled with thorough local exploration JF - Journal of physics : A, Mathematical and theoretical N2 - A combined dynamics consisting of Brownian motion and Levy flights is exhibited by a variety of biological systems performing search processes. Assessing the search reliability of ever locating the target and the search efficiency of doing so economically of such dynamics thus poses an important problem. Here we model this dynamics by a one-dimensional fractional Fokker-Planck equation combining unbiased Brownian motion and Levy flights. By solving this equation both analytically and numerically we show that the superposition of recurrent Brownian motion and Levy flights with stable exponent alpha < 1, by itself implying zero probability of hitting a point on a line, leads to transient motion with finite probability of hitting any point on the line. We present results for the exact dependence of the values of both the search reliability and the search efficiency on the distance between the starting and target positions as well as the choice of the scaling exponent a of the Levy flight component. KW - random search process KW - first passage KW - first arrival KW - Levy flights KW - Brownian motion Y1 - 2016 U6 - https://doi.org/10.1088/1751-8113/49/39/394002 SN - 1751-8113 SN - 1751-8121 VL - 49 SP - 2189 EP - 2193 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Goychuk, Igor A. A1 - Kharchenko, Vasyl O. A1 - Metzler, Ralf T1 - Molecular motors pulling cargos in the viscoelastic cytosol: how power strokes beat subdiffusion JF - Physical Chemistry Chemical Physics N2 - The discovery of anomalous diffusion of larger biopolymers and submicron tracers such as endogenous granules, organelles, or virus capsids in living cells, attributed to the viscoelastic nature of the cytoplasm, provokes the question whether this complex environment equally impacts the active intracellular transport of submicron cargos by molecular motors such as kinesins: does the passive anomalous diffusion of free cargo always imply its anomalously slow active transport by motors, the mean transport distance along microtubule growing sublinearly rather than linearly in time? Here we analyze this question within the widely used two-state Brownian ratchet model of kinesin motors based on the continuous-state diffusion along microtubules driven by a flashing binding potential, where the cargo particle is elastically attached to the motor. Depending on the cargo size, the loading force, the amplitude of the binding potential, the turnover frequency of the molecular motor enzyme, and the linker stiffness we demonstrate that the motor transport may turn out either normal or anomalous, as indeed measured experimentally. We show how a highly efficient normal active transport mediated by motors may emerge despite the passive anomalous diffusion of the cargo, and study the intricate effects of the elastic linker. Under different, well specified conditions the microtubule-based motor transport becomes anomalously slow and thus significantly less efficient. KW - royal soc chemistry KW - thomas graham house KW - science park KW - milton rd KW - cambridge cb4 0wf KW - cambs KW - england Y1 - 2014 SN - 1463-9076 IS - 16 SP - 16524 EP - 16535 PB - the Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Metzler, Ralf A1 - Cherstvy, Andrey G. A1 - Chechkin, Aleksei V. A1 - Bodrova, Anna S. T1 - Ultraslow scaled Brownian motion JF - New journal of physics : the open-access journal for physics N2 - We define and study in detail utraslow scaled Brownian motion (USBM) characterized by a time dependent diffusion coefficient of the form . For unconfined motion the mean squared displacement (MSD) of USBM exhibits an ultraslow, logarithmic growth as function of time, in contrast to the conventional scaled Brownian motion. In a harmonic potential the MSD of USBM does not saturate but asymptotically decays inverse-proportionally to time, reflecting the highly non-stationary character of the process. We show that the process is weakly non-ergodic in the sense that the time averaged MSD does not converge to the regular MSD even at long times, and for unconfined motion combines a linear lag time dependence with a logarithmic term. The weakly non-ergodic behaviour is quantified in terms of the ergodicity breaking parameter. The USBM process is also shown to be ageing: observables of the system depend on the time gap between initiation of the test particle and start of the measurement of its motion. Our analytical results are shown to agree excellently with extensive computer simulations. KW - anomalous diffusion KW - stochastic processes KW - ageing Y1 - 2015 U6 - https://doi.org/10.1088/1367-2630/17/6/063038 SN - 1367-2630 VL - 17 IS - 063038 PB - Dt. Physikalische Ges., IOP CY - Bad Honnef, London ER -