TY - JOUR A1 - Sposini, Vittoria A1 - Krapf, Diego A1 - Marinari, Enzo A1 - Sunyer, Raimon A1 - Ritort, Felix A1 - Taheri, Fereydoon A1 - Selhuber-Unkel, Christine A1 - Benelli, Rebecca A1 - Weiss, Matthias A1 - Metzler, Ralf A1 - Oshanin, Gleb T1 - Towards a robust criterion of anomalous diffusion JF - Communications Physics N2 - Anomalous-diffusion, the departure of the spreading dynamics of diffusing particles from the traditional law of Brownian-motion, is a signature feature of a large number of complex soft-matter and biological systems. Anomalous-diffusion emerges due to a variety of physical mechanisms, e.g., trapping interactions or the viscoelasticity of the environment. However, sometimes systems dynamics are erroneously claimed to be anomalous, despite the fact that the true motion is Brownian—or vice versa. This ambiguity in establishing whether the dynamics as normal or anomalous can have far-reaching consequences, e.g., in predictions for reaction- or relaxation-laws. Demonstrating that a system exhibits normal- or anomalous-diffusion is highly desirable for a vast host of applications. Here, we present a criterion for anomalous-diffusion based on the method of power-spectral analysis of single trajectories. The robustness of this criterion is studied for trajectories of fractional-Brownian-motion, a ubiquitous stochastic process for the description of anomalous-diffusion, in the presence of two types of measurement errors. In particular, we find that our criterion is very robust for subdiffusion. Various tests on surrogate data in absence or presence of additional positional noise demonstrate the efficacy of this method in practical contexts. Finally, we provide a proof-of-concept based on diverse experiments exhibiting both normal and anomalous-diffusion. Y1 - 2022 U6 - https://doi.org/10.1038/s42005-022-01079-8 SN - 2399-3650 VL - 5 PB - Springer Nature CY - London ER - TY - GEN A1 - Sposini, Vittoria A1 - Krapf, Diego A1 - Marinari, Enzo A1 - Sunyer, Raimon A1 - Ritort, Felix A1 - Taheri, Fereydoon A1 - Selhuber-Unkel, Christine A1 - Benelli, Rebecca A1 - Weiss, Matthias A1 - Metzler, Ralf A1 - Oshanin, Gleb T1 - Towards a robust criterion of anomalous diffusion T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Anomalous-diffusion, the departure of the spreading dynamics of diffusing particles from the traditional law of Brownian-motion, is a signature feature of a large number of complex soft-matter and biological systems. Anomalous-diffusion emerges due to a variety of physical mechanisms, e.g., trapping interactions or the viscoelasticity of the environment. However, sometimes systems dynamics are erroneously claimed to be anomalous, despite the fact that the true motion is Brownian—or vice versa. This ambiguity in establishing whether the dynamics as normal or anomalous can have far-reaching consequences, e.g., in predictions for reaction- or relaxation-laws. Demonstrating that a system exhibits normal- or anomalous-diffusion is highly desirable for a vast host of applications. Here, we present a criterion for anomalous-diffusion based on the method of power-spectral analysis of single trajectories. The robustness of this criterion is studied for trajectories of fractional-Brownian-motion, a ubiquitous stochastic process for the description of anomalous-diffusion, in the presence of two types of measurement errors. In particular, we find that our criterion is very robust for subdiffusion. Various tests on surrogate data in absence or presence of additional positional noise demonstrate the efficacy of this method in practical contexts. Finally, we provide a proof-of-concept based on diverse experiments exhibiting both normal and anomalous-diffusion. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1313 Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-585967 SN - 1866-8372 IS - 1313 ER - TY - JOUR A1 - Scott, Shane A1 - Weiss, Matthias A1 - Selhuber-Unkel, Christine A1 - Barooji, Younes F. A1 - Sabri, Adal A1 - Erler, Janine T. A1 - Metzler, Ralf A1 - Oddershede, Lene B. T1 - Extracting, quantifying, and comparing dynamical and biomechanical properties of living matter through single particle tracking JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - A panoply of new tools for tracking single particles and molecules has led to an explosion of experimental data, leading to novel insights into physical properties of living matter governing cellular development and function, health and disease. In this Perspective, we present tools to investigate the dynamics and mechanics of living systems from the molecular to cellular scale via single-particle techniques. In particular, we focus on methods to measure, interpret, and analyse complex data sets that are associated with forces, materials properties, transport, and emergent organisation phenomena within biological and soft-matter systems. Current approaches, challenges, and existing solutions in the associated fields are outlined in order to support the growing community of researchers at the interface of physics and the life sciences. Each section focuses not only on the general physical principles and the potential for understanding living matter, but also on details of practical data extraction and analysis, discussing limitations, interpretation, and comparison across different experimental realisations and theoretical frameworks. Particularly relevant results are introduced as examples. While this Perspective describes living matter from a physical perspective, highlighting experimental and theoretical physics techniques relevant for such systems, it is also meant to serve as a solid starting point for researchers in the life sciences interested in the implementation of biophysical methods. Y1 - 2022 U6 - https://doi.org/10.1039/d2cp01384c SN - 1463-9076 SN - 1463-9084 VL - 25 IS - 3 SP - 1513 EP - 1537 PB - RSC Publ. CY - Cambridge ER - TY - JOUR A1 - Krapf, Diego A1 - Lukat, Nils A1 - Marinari, Enzo A1 - Metzler, Ralf A1 - Oshanin, Gleb A1 - Selhuber-Unkel, Christine A1 - Squarcini, Alessio A1 - Stadler, Lorenz A1 - Weiss, Matthias A1 - Xu, Xinran T1 - Spectral Content of a Single Non-Brownian Trajectory JF - Physical review : X, Expanding access N2 - Time-dependent processes are often analyzed using the power spectral density (PSD) calculated by taking an appropriate Fourier transform of individual trajectories and finding the associated ensemble average. Frequently, the available experimental datasets are too small for such ensemble averages, and hence, it is of a great conceptual and practical importance to understand to which extent relevant information can be gained from S(f, T), the PSD of a single trajectory. Here we focus on the behavior of this random, realization-dependent variable parametrized by frequency f and observation time T, for a broad family of anomalous diffusions-fractional Brownian motion with Hurst index H-and derive exactly its probability density function. We show that S(f, T) is proportional-up to a random numerical factor whose universal distribution we determine-to the ensemble-averaged PSD. For subdiffusion (H < 1/2), we find that S(f, T) similar to A/f(2H+1) with random amplitude A. In sharp contrast, for superdiffusion (H > 1/2) S(f, T) similar to BT2H-1/f(2) with random amplitude B. Remarkably, for H > 1/2 the PSD exhibits the same frequency dependence as Brownian motion, a deceptive property that may lead to false conclusions when interpreting experimental data. Notably, for H > 1/2 the PSD is ageing and is dependent on T. Our predictions for both sub-and superdiffusion are confirmed by experiments in live cells and in agarose hydrogels and by extensive simulations. KW - Biological Physics KW - Interdisciplinary Physics KW - Statistical Physics Y1 - 2019 U6 - https://doi.org/10.1103/PhysRevX.9.011019 SN - 2160-3308 VL - 9 IS - 1 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Thapa, Samudrajit A1 - Lukat, Nils A1 - Selhuber-Unkel, Christine A1 - Cherstvy, Andrey G. A1 - Metzler, Ralf T1 - Transient superdiffusion of polydisperse vacuoles in highly motile amoeboid cells JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr N2 - We perform a detailed statistical analysis of diffusive trajectories of membrane-enclosed vesicles (vacuoles) in the supercrowded cytoplasm of living Acanthamoeba castellanii cells. From the vacuole traces recorded in the center-of-area frame of moving amoebae, we examine the statistics of the time-averaged mean-squared displacements of vacuoles, their generalized diffusion coefficients and anomalous scaling exponents, the ergodicity breaking parameter, the non-Gaussian features of displacement distributions of vacuoles, the displacement autocorrelation function, as well as the distributions of speeds and positions of vacuoles inside the amoeba cells. Our findings deliver novel insights into the internal dynamics of cellular structures in these infectious pathogens. Published under license by AIP Publishing. Y1 - 2019 U6 - https://doi.org/10.1063/1.5086269 SN - 0021-9606 SN - 1089-7690 VL - 150 IS - 14 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Reverey, Julia F. A1 - Jeon, Jae-Hyung A1 - Bao, Han A1 - Leippe, Matthias A1 - Metzler, Ralf A1 - Selhuber-Unkel, Christine T1 - Superdiffusion dominates intracellular particle motion in the supercrowded cytoplasm of pathogenic Acanthamoeba castellanii JF - Scientific reports N2 - Acanthamoebae are free-living protists and human pathogens, whose cellular functions and pathogenicity strongly depend on the transport of intracellular vesicles and granules through the cytosol. Using high-speed live cell imaging in combination with single-particle tracking analysis, we show here that the motion of endogenous intracellular particles in the size range from a few hundred nanometers to several micrometers in Acanthamoeba castellanii is strongly superdiffusive and influenced by cell locomotion, cytoskeletal elements, and myosin II. We demonstrate that cell locomotion significantly contributes to intracellular particle motion, but is clearly not the only origin of superdiffusivity. By analyzing the contribution of microtubules, actin, and myosin II motors we show that myosin II is a major driving force of intracellular motion in A. castellanii. The cytoplasm of A. castellanii is supercrowded with intracellular vesicles and granules, such that significant intracellular motion can only be achieved by actively driven motion, while purely thermally driven diffusion is negligible. Y1 - 2015 U6 - https://doi.org/10.1038/srep11690 SN - 2045-2322 VL - 5 PB - Nature Publ. Group CY - London ER -