TY - JOUR A1 - Sarabadani, Jalal A1 - Metzler, Ralf A1 - Ala-Nissila, Tapio T1 - Driven polymer translocation into a channel: Isoflux tension propagation theory and Langevin dynamics simulations JF - Physical Review Research N2 - Isoflux tension propagation (IFTP) theory and Langevin dynamics (LD) simulations are employed to study the dynamics of channel-driven polymer translocation in which a polymer translocates into a narrow channel and the monomers in the channel experience a driving force fc. In the high driving force limit, regardless of the channel width, IFTP theory predicts τ ∝ f βc for the translocation time, where β = −1 is the force scaling exponent. Moreover, LD data show that for a very narrow channel fitting only a single file of monomers, the entropic force due to the subchain inside the channel does not play a significant role in the translocation dynamics and the force exponent β = −1 regardless of the force magnitude. As the channel width increases the number of possible spatial configurations of the subchain inside the channel becomes significant and the resulting entropic force causes the force exponent to drop below unity. Y1 - 2022 U6 - https://doi.org/10.1103/PhysRevResearch.4.033003 SN - 2643-1564 VL - 4 SP - 033003-1 EP - 033003-14 PB - American Physical Society CY - College Park, Maryland, USA ET - 3 ER - TY - JOUR A1 - Sposini, Vittoria A1 - Krapf, Diego A1 - Marinari, Enzo A1 - Sunyer, Raimon A1 - Ritort, Felix A1 - Taheri, Fereydoon A1 - Selhuber-Unkel, Christine A1 - Benelli, Rebecca A1 - Weiss, Matthias A1 - Metzler, Ralf A1 - Oshanin, Gleb T1 - Towards a robust criterion of anomalous diffusion JF - Communications Physics N2 - Anomalous-diffusion, the departure of the spreading dynamics of diffusing particles from the traditional law of Brownian-motion, is a signature feature of a large number of complex soft-matter and biological systems. Anomalous-diffusion emerges due to a variety of physical mechanisms, e.g., trapping interactions or the viscoelasticity of the environment. However, sometimes systems dynamics are erroneously claimed to be anomalous, despite the fact that the true motion is Brownian—or vice versa. This ambiguity in establishing whether the dynamics as normal or anomalous can have far-reaching consequences, e.g., in predictions for reaction- or relaxation-laws. Demonstrating that a system exhibits normal- or anomalous-diffusion is highly desirable for a vast host of applications. Here, we present a criterion for anomalous-diffusion based on the method of power-spectral analysis of single trajectories. The robustness of this criterion is studied for trajectories of fractional-Brownian-motion, a ubiquitous stochastic process for the description of anomalous-diffusion, in the presence of two types of measurement errors. In particular, we find that our criterion is very robust for subdiffusion. Various tests on surrogate data in absence or presence of additional positional noise demonstrate the efficacy of this method in practical contexts. Finally, we provide a proof-of-concept based on diverse experiments exhibiting both normal and anomalous-diffusion. Y1 - 2022 U6 - https://doi.org/10.1038/s42005-022-01079-8 SN - 2399-3650 VL - 5 PB - Springer Nature CY - London ER - TY - JOUR A1 - Vilk, Ohad A1 - Aghion, Erez A1 - Avgar, Tal A1 - Beta, Carsten A1 - Nagel, Oliver A1 - Sabri, Adal A1 - Sarfati, Raphael A1 - Schwartz, Daniel K. A1 - Weiß, Matthias A1 - Krapf, Diego A1 - Nathan, Ran A1 - Metzler, Ralf A1 - Assaf, Michael T1 - Unravelling the origins of anomalous diffusion BT - from molecules to migrating storks JF - Physical Review Research N2 - Anomalous diffusion or, more generally, anomalous transport, with nonlinear dependence of the mean-squared displacement on the measurement time, is ubiquitous in nature. It has been observed in processes ranging from microscopic movement of molecules to macroscopic, large-scale paths of migrating birds. Using data from multiple empirical systems, spanning 12 orders of magnitude in length and 8 orders of magnitude in time, we employ a method to detect the individual underlying origins of anomalous diffusion and transport in the data. This method decomposes anomalous transport into three primary effects: long-range correlations (“Joseph effect”), fat-tailed probability density of increments (“Noah effect”), and nonstationarity (“Moses effect”). We show that such a decomposition of real-life data allows us to infer nontrivial behavioral predictions and to resolve open questions in the fields of single-particle tracking in living cells and movement ecology. Y1 - 2022 U6 - https://doi.org/10.1103/PhysRevResearch.4.033055 SN - 2643-1564 VL - 4 IS - 3 SP - 033055-1 EP - 033055-16 PB - American Physical Society CY - College Park, MD ER - TY - JOUR A1 - Seckler, Henrik A1 - Metzler, Ralf T1 - Bayesian deep learning for error estimation in the analysis of anomalous diffusion JF - Nature Communnications N2 - Modern single-particle-tracking techniques produce extensive time-series of diffusive motion in a wide variety of systems, from single-molecule motion in living-cells to movement ecology. The quest is to decipher the physical mechanisms encoded in the data and thus to better understand the probed systems. We here augment recently proposed machine-learning techniques for decoding anomalous-diffusion data to include an uncertainty estimate in addition to the predicted output. To avoid the Black-Box-Problem a Bayesian-Deep-Learning technique named Stochastic-Weight-Averaging-Gaussian is used to train models for both the classification of the diffusionmodel and the regression of the anomalous diffusion exponent of single-particle-trajectories. Evaluating their performance, we find that these models can achieve a wellcalibrated error estimate while maintaining high prediction accuracies. In the analysis of the output uncertainty predictions we relate these to properties of the underlying diffusion models, thus providing insights into the learning process of the machine and the relevance of the output. KW - random-walk KW - models Y1 - 2022 U6 - https://doi.org/10.1038/s41467-022-34305-6 SN - 2041-1723 VL - 13 PB - Nature Publishing Group UK CY - London ER - TY - JOUR A1 - Seckler, Henrik A1 - Metzler, Ralf T1 - Bayesian deep learning for error estimation in the analysis of anomalous diffusion JF - Nature Communications N2 - Modern single-particle-tracking techniques produce extensive time-series of diffusive motion in a wide variety of systems, from single-molecule motion in living-cells to movement ecology. The quest is to decipher the physical mechanisms encoded in the data and thus to better understand the probed systems. We here augment recently proposed machine-learning techniques for decoding anomalous-diffusion data to include an uncertainty estimate in addition to the predicted output. To avoid the Black-Box-Problem a Bayesian-Deep-Learning technique named Stochastic-Weight-Averaging-Gaussian is used to train models for both the classification of the diffusion model and the regression of the anomalous diffusion exponent of single-particle-trajectories. Evaluating their performance, we find that these models can achieve a well-calibrated error estimate while maintaining high prediction accuracies. In the analysis of the output uncertainty predictions we relate these to properties of the underlying diffusion models, thus providing insights into the learning process of the machine and the relevance of the output.
Diffusive motions in complex environments such as living biological cells or soft matter systems can be analyzed with single-particle-tracking approaches, where accuracy of output may vary. The authors involve a machine-learning technique for decoding anomalous-diffusion data and provide an uncertainty estimate together with predicted output. Y1 - 2022 U6 - https://doi.org/10.1038/s41467-022-34305-6 SN - 2041-1723 VL - 13 IS - 1 PB - Nature portfolio CY - Berlin ER - TY - GEN A1 - Xu, Pengbo A1 - Zhou, Tian A1 - Metzler, Ralf A1 - Deng, Weihua T1 - Stochastic harmonic trapping of a Lévy walk: transport and first-passage dynamics under soft resetting strategies T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - We introduce and study a Lévy walk (LW) model of particle spreading with a finite propagation speed combined with soft resets, stochastically occurring periods in which an harmonic external potential is switched on and forces the particle towards a specific position. Soft resets avoid instantaneous relocation of particles that in certain physical settings may be considered unphysical. Moreover, soft resets do not have a specific resetting point but lead the particle towards a resetting point by a restoring Hookean force. Depending on the exact choice for the LW waiting time density and the probability density of the periods when the harmonic potential is switched on, we demonstrate a rich emerging response behaviour including ballistic motion and superdiffusion. When the confinement periods of the soft-reset events are dominant, we observe a particle localisation with an associated non-equilibrium steady state. In this case the stationary particle probability density function turns out to acquire multimodal states. Our derivations are based on Markov chain ideas and LWs with multiple internal states, an approach that may be useful and flexible for the investigation of other generalised random walks with soft and hard resets. The spreading efficiency of soft-rest LWs is characterised by the first-passage time statistic. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1262 KW - diffusion KW - anomalous diffusion KW - stochastic resetting KW - Levy walks Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-560402 SN - 1866-8372 SP - 1 EP - 28 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - GEN A1 - Sarabadani, Jalal A1 - Metzler, Ralf A1 - Ala-Nissila, Tapio T1 - Driven polymer translocation into a channel: Isoflux tension propagation theory and Langevin dynamics simulations T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Isoflux tension propagation (IFTP) theory and Langevin dynamics (LD) simulations are employed to study the dynamics of channel-driven polymer translocation in which a polymer translocates into a narrow channel and the monomers in the channel experience a driving force fc. In the high driving force limit, regardless of the channel width, IFTP theory predicts τ ∝ f βc for the translocation time, where β = −1 is the force scaling exponent. Moreover, LD data show that for a very narrow channel fitting only a single file of monomers, the entropic force due to the subchain inside the channel does not play a significant role in the translocation dynamics and the force exponent β = −1 regardless of the force magnitude. As the channel width increases the number of possible spatial configurations of the subchain inside the channel becomes significant and the resulting entropic force causes the force exponent to drop below unity. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1292 Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-574387 SN - 1866-8372 IS - 1292 SP - 033003-1 EP - 033003-14 ER - TY - GEN A1 - Vilk, Ohad A1 - Aghion, Erez A1 - Avgar, Tal A1 - Beta, Carsten A1 - Nagel, Oliver A1 - Sabri, Adal A1 - Sarfati, Raphael A1 - Schwartz, Daniel K. A1 - Weiß, Matthias A1 - Krapf, Diego A1 - Nathan, Ran A1 - Metzler, Ralf A1 - Assaf, Michael T1 - Unravelling the origins of anomalous diffusion BT - from molecules to migrating storks T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Anomalous diffusion or, more generally, anomalous transport, with nonlinear dependence of the mean-squared displacement on the measurement time, is ubiquitous in nature. It has been observed in processes ranging from microscopic movement of molecules to macroscopic, large-scale paths of migrating birds. Using data from multiple empirical systems, spanning 12 orders of magnitude in length and 8 orders of magnitude in time, we employ a method to detect the individual underlying origins of anomalous diffusion and transport in the data. This method decomposes anomalous transport into three primary effects: long-range correlations (“Joseph effect”), fat-tailed probability density of increments (“Noah effect”), and nonstationarity (“Moses effect”). We show that such a decomposition of real-life data allows us to infer nontrivial behavioral predictions and to resolve open questions in the fields of single-particle tracking in living cells and movement ecology. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1303 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-577643 SN - 1866-8372 IS - 1303 ER - TY - GEN A1 - Seckler, Henrik A1 - Metzler, Ralf T1 - Bayesian deep learning for error estimation in the analysis of anomalous diffusion T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Sprache Englisch Modern single-particle-tracking techniques produce extensive time-series of diffusive motion in a wide variety of systems, from single-molecule motion in living-cells to movement ecology. The quest is to decipher the physical mechanisms encoded in the data and thus to better understand the probed systems. We here augment recently proposed machine-learning techniques for decoding anomalous-diffusion data to include an uncertainty estimate in addition to the predicted output. To avoid the Black-Box-Problem a Bayesian-Deep-Learning technique named Stochastic-Weight-Averaging-Gaussian is used to train models for both the classification of the diffusionmodel and the regression of the anomalous diffusion exponent of single-particle-trajectories. Evaluating their performance, we find that these models can achieve a wellcalibrated error estimate while maintaining high prediction accuracies. In the analysis of the output uncertainty predictions we relate these to properties of the underlying diffusion models, thus providing insights into the learning process of the machine and the relevance of the output. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1314 KW - random-walk KW - models Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-586025 SN - 1866-8372 IS - 1314 ER - TY - GEN A1 - Sposini, Vittoria A1 - Krapf, Diego A1 - Marinari, Enzo A1 - Sunyer, Raimon A1 - Ritort, Felix A1 - Taheri, Fereydoon A1 - Selhuber-Unkel, Christine A1 - Benelli, Rebecca A1 - Weiss, Matthias A1 - Metzler, Ralf A1 - Oshanin, Gleb T1 - Towards a robust criterion of anomalous diffusion T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Anomalous-diffusion, the departure of the spreading dynamics of diffusing particles from the traditional law of Brownian-motion, is a signature feature of a large number of complex soft-matter and biological systems. Anomalous-diffusion emerges due to a variety of physical mechanisms, e.g., trapping interactions or the viscoelasticity of the environment. However, sometimes systems dynamics are erroneously claimed to be anomalous, despite the fact that the true motion is Brownian—or vice versa. This ambiguity in establishing whether the dynamics as normal or anomalous can have far-reaching consequences, e.g., in predictions for reaction- or relaxation-laws. Demonstrating that a system exhibits normal- or anomalous-diffusion is highly desirable for a vast host of applications. Here, we present a criterion for anomalous-diffusion based on the method of power-spectral analysis of single trajectories. The robustness of this criterion is studied for trajectories of fractional-Brownian-motion, a ubiquitous stochastic process for the description of anomalous-diffusion, in the presence of two types of measurement errors. In particular, we find that our criterion is very robust for subdiffusion. Various tests on surrogate data in absence or presence of additional positional noise demonstrate the efficacy of this method in practical contexts. Finally, we provide a proof-of-concept based on diverse experiments exhibiting both normal and anomalous-diffusion. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1313 Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-585967 SN - 1866-8372 IS - 1313 ER -