TY - JOUR A1 - Bauer, Maximilian A1 - Godec, Aljaž A1 - Metzler, Ralf T1 - Diffusion of finite-size particles in two-dimensional channels with random wall configurations JF - Physical chemistry, chemical physics : PCCP ; a journal of European chemical societies N2 - Diffusion of chemicals or tracer molecules through complex systems containing irregularly shaped channels is important in many applications. Most theoretical studies based on the famed Fick–Jacobs equation focus on the idealised case of infinitely small particles and reflecting boundaries. In this study we use numerical simulations to consider the transport of finite-size particles through asymmetrical two-dimensional channels. Additionally, we examine transient binding of the molecules to the channel walls by applying sticky boundary conditions. We consider an ensemble of particles diffusing in independent channels, which are characterised by common structural parameters. We compare our results for the long-time effective diffusion coefficient with a recent theoretical formula obtained by Dagdug and Pineda [J. Chem. Phys., 2012, 137, 024107]. KW - anomalous diffusion KW - fractional dynamics KW - transport KW - nonergodicity KW - coefficient Y1 - 2014 U6 - https://doi.org/10.1039/C3CP55160A SN - 1463-9084 SN - 1463-9076 VL - 16 IS - 13 SP - 6118 EP - 6128 PB - RSC Publications CY - Cambridge ER - TY - GEN A1 - Bauer, Maximilian A1 - Godec, Aljaž A1 - Metzler, Ralf T1 - Diffusion of finite-size particles in two-dimensional channels with random wall configurations N2 - Diffusion of chemicals or tracer molecules through complex systems containing irregularly shaped channels is important in many applications. Most theoretical studies based on the famed Fick–Jacobs equation focus on the idealised case of infinitely small particles and reflecting boundaries. In this study we use numerical simulations to consider the transport of finite-size particles through asymmetrical two-dimensional channels. Additionally, we examine transient binding of the molecules to the channel walls by applying sticky boundary conditions. We consider an ensemble of particles diffusing in independent channels, which are characterised by common structural parameters. We compare our results for the long-time effective diffusion coefficient with a recent theoretical formula obtained by Dagdug and Pineda [J. Chem. Phys., 2012, 137, 024107]. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 177 KW - anomalous diffusion KW - fractional dynamics KW - transport KW - nonergodicity KW - coefficient Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-76199 ER -