TY - JOUR A1 - Maity, Alok Kumar A1 - Bandyopadhyay, Arnab A1 - Chattopadhyay, Sudip A1 - Chaudhuri, Jyotipratim Ray A1 - Metzler, Ralf A1 - Chaudhury, Pinaki A1 - Banik, Suman K. T1 - Quantification of noise in bifunctionality-induced post-translational modification JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - We present a generic analytical scheme for the quantification of fluctuations due to bifunctionality-induced signal transduction within the members of a bacterial two-component system. The proposed model takes into account post-translational modifications in terms of elementary phosphotransfer kinetics. Sources of fluctuations due to autophosphorylation, kinase, and phosphatase activity of the sensor kinase have been considered in the model via Langevin equations, which are then solved within the framework of linear noise approximation. The resultant analytical expression of phosphorylated response regulators are then used to quantify the noise profile of biologically motivated single and branched pathways. Enhancement and reduction of noise in terms of extra phosphate outflux and influx, respectively, have been analyzed for the branched system. Furthermore, the role of fluctuations of the network output in the regulation of a promoter with random activation-deactivation dynamics has been analyzed. Y1 - 2013 U6 - https://doi.org/10.1103/PhysRevE.88.032716 SN - 1539-3755 VL - 88 IS - 3 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Talukder, Srijeeta A1 - Sen, Shrabani A1 - Metzler, Ralf A1 - Banik, Suman K. A1 - Chaudhury, Pinaki T1 - Stochastic optimization-based study of dimerization kinetics JF - JOURNAL OF CHEMICAL SCIENCES N2 - We investigate the potential of numerical algorithms to decipher the kinetic parameters involved in multi-step chemical reactions. To this end, we study dimerization kinetics of protein as a model system. We follow the dimerization kinetics using a stochastic simulation algorithm and combine it with three different optimization techniques (genetic algorithm, simulated annealing and parallel tempering) to obtain the rate constants involved in each reaction step. We find good convergence of the numerical scheme to the rate constants of the process. We also perform a sensitivity test on the reaction kinetic parameters to see the relative effects of the parameters for the associated profile of the monomer/dimer distribution. KW - Stochastic optimization KW - dimerization kinetics KW - sensitivity analysis KW - stochastic simulation algorithm KW - probability distribution function Y1 - 2013 SN - 0974-3626 SN - 0973-7103 VL - 125 IS - 6 SP - 1619 EP - 1627 PB - INDIAN ACAD SCIENCES CY - BANGALORE ER -