TY - JOUR A1 - Träger, Juliane A1 - Klamroth, Tillmann A1 - Kelling, Alexandra A1 - Lubahn, Susanne A1 - Cleve, Ernst A1 - Mickler, Wulfhard A1 - Heydenreich, Matthias A1 - Müller, Holger A1 - Holdt, Hans-Jürgen T1 - Complexation of Palladium(II) with unsaturated Dithioethers a systematic development of highly selective ligands for solvent extraction JF - European journal of inorganic chemistry : a journal of ChemPubSoc Europe N2 - There is a demand for new and robust PdII extractants due to growing recycling rates. Chelating dithioethers are promising substances for solvent extraction as they form stable square-planar complexes with PdII. We have modified unsaturated dithioethers, which are known to coordinate PdII, and adapted them to the requirements of industrial practice. The ligands are analogues of 1,2-dithioethene with varying electron-withdrawing backbones and polar end-groups. The crystal structures of several ligands and their palladium complexes were determined as well as their electro- and photochemical properties, complex stability and behaviour in solution. Solvent extraction experiments showed the superiority of some of our ligands over conventionally used extractants in terms of their very fast reaction rates. With highly selective 1,2-bis(2-methoxyethylthio)benzene (4) it is possible to extract PdII from a highly acidic medium in the presence of other base and palladium-group metals. KW - Renewable resources KW - Palladium KW - Chelates KW - Ligand design KW - S li-gands Y1 - 2012 U6 - https://doi.org/10.1002/ejic.201101406 SN - 1434-1948 IS - 14 SP - 2341 EP - 2352 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Trautmann, Michael A1 - Lubahn, Susanne A1 - Holdt, Hans-Jürgen T1 - Preparation, characterisation and properties of sulphoxide modified polystyrene resins for solid-phase extraction of Pt-IV, Ru-III and Ru-IV from hydrochloric acid JF - Reactive & functional polymers N2 - New sulphoxide modified resins were synthesized using poly(styrene-co-divinylbenzene) (PS-DVB) as matrix. Infrared spectroscopy and elemental analysis were used for characterisation. Solid-phase extraction of Pt-IV, Ru-III and Ru-IV from acidic chloride solutions was performed via batch experiments. Influence of spacer length between sulphoxide and matrix (ethylene, hexamethylene), substitution of sulphoxide (R-1: ethyl, hexyl, phenyl) and bead size of PS-DVB (spherical beads: d(50) < 155 mu m, d(50) < 80 mu m; powder: d(50) < 30 mu m) on adsorption was investigated subjected to acidity. Experimental results showed that ethyl substituted sulphoxide immobilised onto ground PS-DVB and hexamethylene spacer exhibited best adsorption properties. Different kinetic models and isotherms were fitted to the experimental data to identify extraction mechanism. Pt-IV was quantitative sorbed at [HCl] <= 0.1 mol/L whereas Ru-III and Ru-IV sorption ranged between 90% and 95% at [HCl] 5 mol/L. Desorption was reached using a solution of 0.5 M thiourea (Tu) in 0.1 M HCl at 90 degrees C. Separation of Pt-IV and Rum occurred at [HCl] <= 0.1 mol/L whereas Pt-IV was extracted and Ru-III remained in solution. A further separation was achieved by extracting Pt-IV and Ru-IV at 5 M HCl followed by sequential elution of Pt-IV with concentrated HCl and Ru-IV with 0.5 M Tu in 0.1 M HCl at 90 degrees C. 2014 Elsevier B.V. All rights reserved. KW - Solid-phase extraction KW - Platinum group metals KW - Polystyrene-divinylbenzene KW - Sulphoxide KW - Adsorption kinetic Y1 - 2014 U6 - https://doi.org/10.1016/j.reactfunctpolym.2014.07.001 SN - 1381-5148 SN - 1873-166X VL - 83 SP - 84 EP - 97 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Unuabonah, Emmanuel I. A1 - Günter, Christina A1 - Weber, Jens A1 - Lubahn, Susanne A1 - Taubert, Andreas T1 - Hybrid Clay - a new highly efficient adsorbent for water treatment JF - ACS sustainable chemistry & engineering N2 - New hybrid clay adsorbent based on kaolinite clay and Carica papaya seeds with improved cation exchange capacity (CEC), rate of heavy metal ion uptake, and adsorption capacity for heavy metal ions were prepared. The CEC of the new material is ca. 75 meq/100 g in spite of the unexpectedly low surface area (approximate to 19 m(2)/g). Accordingly, the average particle size of the hybrid clay adsorbent decreased from over 200 to 100 pm. The hybrid clay adsorbent is a highly efficient adsorbent for heavy metals. With an initial metal concentration of 1 mg/L, the hybrid clay adsorbent reduces the Cd2+, Ni2+, and Pb2+ concentration in aqueous solution to <= 4, <= 7 and <= 20 mu g/L, respectively, from the first minute to over 300 min using a fixed bed containing 2 g of adsorbent and a flow rate of approximate to 7 mL/min. These values are (with the exception of Pb2+) in line with the WHO permissible limits for heavy metal ions. In a cocktail solution of Cd2+, and Ni2+, the hybrid clay shows a reduced rate of uptake but an increased adsorption capacity. The CEC data suggest that the adsorption of Pb2+, Cd2+, and Ni2+ on the hybrid clay adsorbent is essentially due to ion exchange. This hybrid clay adsorbent is prepared from materials that are abundant and by a simple means that is sustainable, easily recovered from aqueous solution, nonbiodegradable (unlike numerous biosorbent), and easily regenerated and is a highly efficient alternative to activated carbon for water treatment. KW - Kaolinite KW - Hybrid clay KW - Water treatment KW - Cation exchange Capacity KW - Adsorbent KW - Kinetics Y1 - 2013 U6 - https://doi.org/10.1021/sc400051y SN - 2168-0485 VL - 1 IS - 8 SP - 966 EP - 973 PB - American Chemical Society CY - Washington ER - TY - GEN A1 - Behrens, Karsten A1 - Balischewski, Christian A1 - Sperlich, Eric A1 - Menski, Antonia Isabell A1 - Balderas-Valadez, Ruth Fabiola A1 - Pacholski, Claudia A1 - Günter, Christina A1 - Lubahn, Susanne A1 - Kelling, Alexandra A1 - Taubert, Andreas T1 - Mixed chloridometallate(ii) ionic liquids with tunable color and optical response for potential ammonia sensors T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Eight d-metal-containing N-butylpyridinium ionic liquids (ILs) with the nominal composition (C4Py)2[Ni0.5M0.5Cl4] or (C4Py)2[Zn0.5M0.5Cl4] (M = Cu, Co, Mn, Ni, Zn; C4Py = N-butylpyridinium) were synthesized, characterized, and investigated for their optical properties. Single crystal and powder X-ray analysis shows that the compounds are isostructural to existing examples based on other d-metal ions. Inductively coupled plasma optical emission spectroscopy measurements confirm that the metal/metal ratio is around 50 : 50. UV-Vis spectroscopy shows that the optical absorption can be tuned by selection of the constituent metals. Moreover, the compounds can act as an optical sensor for the detection of gases such as ammonia as demonstrated via a simple prototype setup. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1316 Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-587512 SN - 1866-8372 IS - 1316 SP - 35072 EP - 35082 ER - TY - JOUR A1 - Behrens, Karsten A1 - Balischewski, Christian A1 - Sperlich, Eric A1 - Menski, Antonia Isabell A1 - Balderas-Valadez, Ruth Fabiola A1 - Pacholski, Claudia A1 - Günter, Christina A1 - Lubahn, Susanne A1 - Kelling, Alexandra A1 - Taubert, Andreas T1 - Mixed chloridometallate(ii) ionic liquids with tunable color and optical response for potential ammonia sensors JF - RSC Advances N2 - Eight d-metal-containing N-butylpyridinium ionic liquids (ILs) with the nominal composition (C4Py)2[Ni0.5M0.5Cl4] or (C4Py)2[Zn0.5M0.5Cl4] (M = Cu, Co, Mn, Ni, Zn; C4Py = N-butylpyridinium) were synthesized, characterized, and investigated for their optical properties. Single crystal and powder X-ray analysis shows that the compounds are isostructural to existing examples based on other d-metal ions. Inductively coupled plasma optical emission spectroscopy measurements confirm that the metal/metal ratio is around 50 : 50. UV-Vis spectroscopy shows that the optical absorption can be tuned by selection of the constituent metals. Moreover, the compounds can act as an optical sensor for the detection of gases such as ammonia as demonstrated via a simple prototype setup. Y1 - 2022 U6 - https://doi.org/10.1039/d2ra05581c SN - 2046-2069 VL - 12 SP - 35072 EP - 35082 PB - RSC CY - London ER - TY - JOUR A1 - Balischewski, Christian A1 - Bhattacharyya, Biswajit A1 - Sperlich, Eric A1 - Günter, Christina A1 - Beqiraj, Alkit A1 - Klamroth, Tillmann A1 - Behrens, Karsten A1 - Mies, Stefan A1 - Kelling, Alexandra A1 - Lubahn, Susanne A1 - Holtzheimer, Lea A1 - Nitschke, Anne A1 - Taubert, Andreas T1 - Tetrahalidometallate(II) ionic liquids with more than one metal BT - the effect of bromide versus chloride JF - Chemistry - a European journal N2 - Fifteen N-butylpyridinium salts - five monometallic [C4Py](2)[MBr4] and ten bimetallic [C4Py](2)[(M0.5M0.5Br4)-M-a-Br-b] (M=Co, Cu, Mn, Ni, Zn) - were synthesized, and their structures and thermal and electrochemical properties were studied. All the compounds are ionic liquids (ILs) with melting points between 64 and 101 degrees C. Powder and single-crystal X-ray diffraction show that all ILs are isostructural. The electrochemical stability windows of the ILs are between 2 and 3 V. The conductivities at room temperature are between 10(-5) and 10(-6) S cm(-1). At elevated temperatures, the conductivities reach up to 10(-4) S cm(-1) at 70 degrees C. The structures and properties of the current bromide-based ILs were also compared with those of previous examples using chloride ligands, which illustrated differences and similarities between the two groups of ILs. KW - electrochemistry KW - ionic liquids KW - metal-containing ionic liquids; KW - N-butylpyridinium bromide KW - tetrahalidometallates Y1 - 2022 U6 - https://doi.org/10.1002/chem.202201068 SN - 1521-3765 VL - 28 IS - 64 PB - Wiley-VCH CY - Weinheim ER -