TY - JOUR A1 - Irrgang, Anna Maria A1 - Lantuit, Hugues A1 - Manson, Gavin K. A1 - Günther, Frank A1 - Grosse, Guido A1 - Overduin, Pier Paul T1 - Variability in rates of coastal change along the Yukon Coast, 1951 to 2015 JF - Journal of geophysical research : Earth surface N2 - To better understand the reaction of Arctic coasts to increasing environmental pressure, coastal changes along a 210-km length of the Yukon Territory coast in north-west Canada were investigated. Shoreline positions were acquired from aerial and satellite images between 1951 and 2011. Shoreline change rates were calculated for multiple time periods along the entire coast and at six key sites. Additionally, Differential Global Positioning System (DGPS) measurements of shoreline positions from seven field sites were used to analyze coastal dynamics from 1991 to 2015 at higher spatial resolution. The whole coast has a consistent, spatially averaged mean rate of shoreline change of 0.7 +/- 0.2 m/a with a general trend of decreasing erosion from west to east. Additional data from six key sites shows that the mean shoreline change rate decreased from -1.3 +/- 0.8 (1950s-1970s) to -0.5 +/- 0.6 m/a (1970s-1990s). This was followed by a significant increase in shoreline change to -1.3 +/- 0.3 m/a in the 1990s to 2011. This increase is confirmed by DGPS measurements that indicate increased erosion rates at local rates up to -8.9 m/a since 2006. Ground surveys and observations with remote sensing data indicate that the current rate of shoreline retreat along some parts of the Yukon coast is higher than at any time before in the 64-year-long observation record. Enhanced availability of material in turn might favor the buildup of gravel features, which have been growing in extent throughout the last six decades. Plain Language Summary The Arctic is warming, but the impacts on its coasts are not well documented. To better understand the reaction of Arctic coasts to increasing environmental pressure, shoreline position changes along a 210-km length of the Yukon Territory coast in northwest Canada were investigated for the time period from 1951 to 2015. Shoreline positions were extracted from historical aerial images from the 1950s, 1970s, and 1990s and from satellite images from 2011. Additionally, measurements of shoreline positions from field sites were used to analyze coastal dynamics from 1991 to 2015. The mean shoreline change rate was -1.3 m/a between the 1950s and 1970s and followed by a decrease to -0.5 m/a between the 1970s to 1990s. This was followed by a significant increase in mean shoreline change rates again to -1.3 m/a in the 1990s to 2011 time period. This acceleration in erosion is confirmed by field measurements that indicate increased erosion rates at high local rates up to -8.9 m/a since 2006. Enhanced coastal erosion might, in turn, favor the buildup of gravel features, which have been growing in extent throughout the last six decades. Y1 - 2018 U6 - https://doi.org/10.1002/2017JF004326 SN - 2169-9003 SN - 2169-9011 VL - 123 IS - 4 SP - 779 EP - 800 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Wolter, Juliane A1 - Lantuit, Hugues A1 - Herzschuh, Ulrike A1 - Stettner, Samuel A1 - Fritz, Michael T1 - Tundra vegetation stability versus lake-basin variability on the Yukon Coastal Plain (NW Canada) during the past three centuries JF - The Holocene : an interdisciplinary journal focusing on recent environmental change KW - pollen Y1 - 2017 U6 - https://doi.org/10.1177/0959683617708441 SN - 0959-6836 SN - 1477-0911 VL - 27 SP - 1846 EP - 1858 PB - Sage Publ. CY - London ER - TY - JOUR A1 - Tanski, George A1 - Lantuit, Hugues A1 - Ruttor, Saskia A1 - Knoblauch, Christian A1 - Radosavljevic, Boris A1 - Strauß, Jens A1 - Wolter, Juliane A1 - Irrgang, Anna Maria A1 - Ramage, Justine Lucille A1 - Fritz, Michael T1 - Transformation of terrestrial organic matter along thermokarst-affected permafrost coasts in the Arctic JF - The science of the total environment : an international journal for scientific research into the environment and its relationship with man N2 - The changing climate in the Arctic has a profound impact on permafrost coasts, which are subject to intensified thermokarst formation and erosion. Consequently, terrestrial organic matter (OM) is mobilized and transported into the nearshore zone. Yet, little is known about the fate of mobilized OM before and after entering the ocean. In this study we investigated a retrogressive thaw slump (RTS) on Qikiqtaruk - Herschel Island (Yukon coast, Canada). The RTS was classified into an undisturbed, a disturbed (thermokarst-affected) and a nearshore zone and sampled systematically along transects. Samples were analyzed for total and dissolved organic carbon and nitrogen (TOC, DOC, TN, DN), stable carbon isotopes (delta C-13-TOC, delta C-13-DOC), and dissolved inorganic nitrogen (DIN), which were compared between the zones. C/N-ratios, delta C-13 signatures, and ammonium (NH4-N) concentrations were used as indicators for OM degradation along with biomarkers (n-alkanes, n-fatty adds, n-alcohols). Our results show that OM significantly decreases after disturbance with a TOC and DOC loss of 77 and 55% and a TN and DN loss of 53 and 48%, respectively. C/N-ratios decrease significantly, whereas NH4-N concentrations slightly increase in freshly thawed material. In the nearshore zone, OM contents are comparable to the disturbed zone. We suggest that the strong decrease in OM is caused by initial dilution with melted massive ice and immediate offshore transport via the thaw stream. In the mudpool and thaw stream, OM is subject to degradation, whereas in the slump floor the nitrogen decrease is caused by recolonizing vegetation. Within the nearshore zone of the ocean, heavier portions of OM are directly buried in marine sediments close to shore. We conclude that RTS have profound impacts on coastal environments in the Arctic. They mobilize nutrients from permafrost, substantially decrease OM contents and provide fresh water and nutrients at a point source. KW - Canadian Arctic KW - Coastal erosion KW - Retrogressive thaw slump KW - Biogeochemistry KW - Carbon degradation Y1 - 2017 U6 - https://doi.org/10.1016/j.scitotenv.2016.12.152 SN - 0048-9697 SN - 1879-1026 VL - 581 SP - 434 EP - 447 PB - Elsevier Science CY - Amsterdam ER - TY - JOUR A1 - Tanski, George A1 - Bergstedt, Helena A1 - Bevington, Alexandre A1 - Bonnaventure, Philip A1 - Bouchard, Frederic A1 - Coch, Caroline A1 - Dumais, Simon A1 - Evgrafova, Alevtina A1 - Frauenfeld, Oliver W. A1 - Frederick, Jennifer A1 - Fritz, Michael A1 - Frolov, Denis A1 - Harder, Silvie A1 - Hartmeyer, Ingo A1 - Heslop, Joanne A1 - Hoegstroem, Elin A1 - Johansson, Margareta A1 - Kraev, Gleb A1 - Kuznetsova, Elena A1 - Lenz, Josefine A1 - Lupachev, Alexey A1 - Magnin, Florence A1 - Martens, Jannik A1 - Maslakov, Alexey A1 - Morgenstern, Anne A1 - Nieuwendam, Alexandre A1 - Oliva, Marc A1 - Radosavljevi, Boris A1 - Ramage, Justine Lucille A1 - Schneider, Andrea A1 - Stanilovskaya, Julia A1 - Strauss, Jens A1 - Trochim, Erin A1 - Vecellio, Daniel J. A1 - Weber, Samuel A1 - Lantuit, Hugues T1 - The Permafrost Young Researchers Network (PYRN) is getting older BT - The past, present, and future of our evolving community JF - Polar record N2 - A lasting legacy of the International Polar Year (IPY) 2007–2008 was the promotion of the Permafrost Young Researchers Network (PYRN), initially an IPY outreach and education activity by the International Permafrost Association (IPA). With the momentum of IPY, PYRN developed into a thriving network that still connects young permafrost scientists, engineers, and researchers from other disciplines. This research note summarises (1) PYRN’s development since 2005 and the IPY’s role, (2) the first 2015 PYRN census and survey results, and (3) PYRN’s future plans to improve international and interdisciplinary exchange between young researchers. The review concludes that PYRN is an established network within the polar research community that has continually developed since 2005. PYRN’s successful activities were largely fostered by IPY. With >200 of the 1200 registered members active and engaged, PYRN is capitalising on the availability of social media tools and rising to meet environmental challenges while maintaining its role as a successful network honouring the legacy of IPY. KW - Early-career scientists KW - Education KW - IPY KW - International Polar Year KW - Outreach KW - Permafrost Young Researchers Network KW - PYRN KW - Science communication Y1 - 2019 U6 - https://doi.org/10.1017/S0032247418000645 SN - 0032-2474 SN - 1475-3057 VL - 55 IS - 4 SP - 216 EP - 219 PB - Cambridge Univ. Press CY - New York ER - TY - GEN A1 - Biskaborn, Boris K. A1 - Lanckman, J.-P. A1 - Lantuit, Hugues A1 - Elger, K. A1 - Streletskiy, Dmitry A1 - Cable, W. L. A1 - Romanovsky, Vladimir E. T1 - The new database of the Global Terrestrial Network for Permafrost (GTN-P) T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The Global Terrestrial Network for Permafrost (GTN-P) provides the first dynamic database associated with the Thermal State of Permafrost (TSP) and the Circumpolar Active Layer Monitoring (CALM) programs, which extensively collect permafrost temperature and active layer thickness (ALT) data from Arctic, Antarctic and mountain permafrost regions. The purpose of GTN-P is to establish an early warning system for the consequences of climate change in permafrost regions and to provide standardized thermal permafrost data to global models. In this paper we introduce the GTN-P database and perform statistical analysis of the GTN-P metadata to identify and quantify the spatial gaps in the site distribution in relation to climate-effective environmental parameters. We describe the concept and structure of the data management system in regard to user operability, data transfer and data policy. We outline data sources and data processing including quality control strategies based on national correspondents. Assessment of the metadata and data quality reveals 63% metadata completeness at active layer sites and 50% metadata completeness for boreholes. Voronoi tessellation analysis on the spatial sample distribution of boreholes and active layer measurement sites quantifies the distribution inhomogeneity and provides a potential method to locate additional permafrost research sites by improving the representativeness of thermal monitoring across areas underlain by permafrost. The depth distribution of the boreholes reveals that 73% are shallower than 25m and 27% are deeper, reaching a maximum of 1 km depth. Comparison of the GTN-P site distribution with permafrost zones, soil organic carbon contents and vegetation types exhibits different local to regional monitoring situations, which are illustrated with maps. Preferential slope orientation at the sites most likely causes a bias in the temperature monitoring and should be taken into account when using the data for global models. The distribution of GTN-P sites within zones of projected temperature change show a high representation of areas with smaller expected temperature rise but a lower number of sites within Arctic areas where climate models project extreme temperature increase. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 523 KW - international polar year KW - thermal state KW - climate-change KW - active-layer KW - carbon Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-409612 SN - 1866-8372 IS - 523 ER - TY - THES A1 - Lantuit, Hugues T1 - The modification of arctic permafrost coastlines T1 - Die Veränderung der arktischen Permafrostküstenlinien N2 - The arctic region is undergoing the most rapid environmental change experienced on Earth, and the rate of change is expected to increase over the coming decades. Arctic coasts are particularly vulnerable because they lie at the interface between terrestrial systems dominated by permafrost and marine systems dominated by sea ice. An increased rise in sea level and degradation of sea-ice as predicted by the Intergovernmental Panel on Climate Change in its most recent report and as observed recently in the Arctic will likely result in greater rates of coastal retreat. An increase in coastal erosion would result in dramatic increases in the volume of sediment, organic carbon and contaminants to the Arctic Ocean. These in turn have the potential to create dramatic changes in the geochemistry and biodiversity of the nearshore zone and affect the Arctic Ocean carbon cycle. To calculate estimates of organic carbon input from coastal erosion to the Arctic Ocean, current methods rely on the length of the coastline in the form of non self-similar line datasets. This thesis however emphasizes that using shorelines drawn at different scales can induce changes in the amount of sediment released by 30% in some cases. It proposes a substitute method of computations of erosion based on areas instead of lengths (i.e. buffers instead of shoreline lengths) which can be easily implemented at the circum-Arctic scale. Using this method, variations in quantities of eroded sediment are, on average, 70% less affected by scale changes and are therefore a more reliable method of calculation. Current estimates of coastal erosion rates in the Arctic are scarce and long-term datasets are a handful, which complicates assessment and prognosis of coastal processes, in particular the occurrence of coastal hazards. This thesis aims at filling the gap by providing the first long-term dataset (1951-2006) of coastal erosion on the Bykovsky Peninsula, North-East Siberia. This study shows that the coastline, which is made of ice-rich permafrost, retreated at a mean annual rate of 0.59 m/yr between 1951and 2006. Rates were highly variable: 97.0 % of the rates observed were less than 2 m/yr and 81.6% were less than 1m/yr. However, no significant trend in erosion could be recorded despite the study of five temporal subperiods within 1951-2006. The juxtaposition of wind records could not help to explain erosion records either and this thesis emphasizes the local controls on erosion, in particular the cryostratigraphy, the proximity of the Peninsula to the Lena River Delta freshwater plume and the local topographical constraints on swell development. On ice-rich coastal stretches of the Artic, the interaction of coastal dynamics and permafrost leads to the occurrence of spectacular “C-shaped” depressions termed retrogressive thaw slumps which can reach lengths of up to 650 m. On Herschel Island and at King Point (Yukon Coastal Plain, northern Canada), topographical, sedimentological and biogeochemical surveys were conducted to investigate the present and past activity of these landforms. In particular, undisturbed tundra areas were compared with zones of former slump activity, now stabilized and re-vegetated. This thesis shows that stabilized areas are drier and less prone to plant growth than undisturbed areas and feature fundamentally different geotechnical properties. Radiocarbon dating and topographical surveys indicated until up to 300 BP a likely period of dramatic slump activity on Herschel Island, similar to the one currently observed, which led to the creation of these surfaces. This thesis hypothesizes the occurrence of a ~250 years cycle of slump activity on the Herschel Island shoreline based on the surveyed topography and cryostratigraphy and anticipates higher frequency of slump activity in the future. The variety of processes described in this thesis highlights the changing nature of the intensity and frequency of physical processes acting upon the arctic coast. It also challenges current perceptions of the threats to existing industry and community infrastructure in the Arctic. The increasing presence of humans on Artic coasts coupled with the expected development of shipping will drive an increase in economical and industrial activity on these coasts which remains to be addressed scientifically. N2 - In der Arktis sind die derzeit stärksten Umweltänderungen weltweit zu beobachten, und es wird angenommen, dass sich deren Ausmaß sogar noch verstärken wird. Aufgrund ihrer Lage zwischen terrestrischen, von Permafrost geprägten Systemen und marinen, von Meereis geprägten Systemen, sind arktische Küstenregionen im Zuge dieses Wandels besonders sensibel. Ein verstärkter Meeresspiegelanstieg und der Rückgang des Meereises, wie vom letzten Bericht des Intergovernmental Panel on Climate Change (IPCC) vorhergesagt und in letzter Zeit in der Arktis beobachtet, werden zu erhöhten Küstenrückzugsraten führen. Ein Anstieg der Küstenerosion würde zu einer drastischen Erhöhung von Sedimentfracht, organischem Kohlenstoff und von Schadstoffen im Arktischen Ozean führen. Durch diese wiederum drohen dramatische Änderungen in der Geochemie und Biodiversität der küstennahen Zone sowie Veränderungen im Kohlenstoffkreislauf des Arktischen Ozeans. Modelle zur Berechnung des Eintrags organischen Kohlenstoffs in den Arktischen Ozean infolge von Küstenerosion basieren auf der Länge der Küstenlinie in Form von „non self-similar“ Datensätzen. Die vorliegende Arbeit zeigt jedoch, dass die Nutzung von Küstenlinien unterschiedlicher Maßstäbe Abweichungen in der berechneten Sedimentfracht von bis zu 30 % zur Folge haben kann. Es wird daher eine alternative Methode zur Berechnung von Erosionsraten vorgeschlagen, die auf Flächen, nicht auf Längenangaben basiert (z.B. Pufferzonen anstelle von Küstenlinien) und die auf einfache Art und Weise für die Zirkum-Arktis angewandt werden kann. Durch diese Methode ist die Variation der berechneten Erosionsmengen um durchschnittlich 70 % weniger von Maßstabsänderungen betroffen. Damit kann eine deutlich höhere Zuverlässigkeit in den Prognosen erreicht werden. Aktuelle Abschätzungen von Küstenerosionsraten in der Arktis sind spärlich und es gibt nur sehr wenige Langzeitdatensätze, so dass Einschätzungen und Prognosen zu Prozessen im Küstenbereich, insbesondere von dessen Gefährdung, schwierig sind. Die vorliegende Arbeit soll dazu beigetragen, diese Lücke zu schließen, indem der erste Langzeitdatensatz (1951-2006) zu Küstenerosionsraten auf der Bykovsky Halbinsel in Nordost-Sibirien bereitgestellt wird. Die Arbeit zeigt, dass die Küstenlinie auf der Bykovsky Halbinsel, die durch eisreichen Permafrost geprägt ist, im Zeitraum 1951-2006 um durchschnittlich 0,59 m pro Jahr zurückging. Die Rückzugsraten waren dabei äußerst variabel: 97 % aller ermittelten Raten betrugen weniger als 2 m und 81,6 % weniger als 1 m pro Jahr. Ein signifikanter Trend in den Erosionsraten konnte dabei jedoch trotz Analyse von fünf verschiedenen zeitlichen Epochen nicht festgestellt werden. Auch die Gegenüberstellung von Winddatensätzen kann die Erosionsraten nicht erklären. Deshalb stellt diese Arbeit die Bedeutung lokaler Kontrollmechanismen wie Kryostratigraphie, die Nähe der Bykovsky Halbinsel zum Lena-Delta und seinen Süßwasservorkommen sowie die lokale Topographie und deren Einfluss auf Wellengang und Wellenbildung heraus. Innerhalb eisreicher arktischer Küstenabschnitte führt die Interaktion zwischen Küstendynamik und Permafrost zur Ausprägung eindrucksvoller, „C-förmiger“ Depressionen, sogenannten regressiven auftaubedingten Rutschungen, die Längen von bis zu 650 m erreichen können. Auf Herschel Island und am King Point (Yukon Küste, Nordkanada) wurden topographische, sedimentologische und biogeochemische Aufnahmen durchgeführt, um die rezente und vergangene Dynamik dieser Landschaftsformen nachvollziehen zu können. Insbesondere wurden ungestörte Tundrenareale mit ehemals aktiven Rutschungszonen, die heute stabil und wiederbewachsen sind, verglichen. Die vorliegende Arbeit zeigt, dass diese ehemaligen, heute stabilisierten Rutschungszonen trockenere und für Pflanzenwachstum weniger geeignete Standorte darstellen als ungestörte Bereiche und überdies fundamental andere geotechnische Eigenschaften aufweisen. Radiocarbon-Datierungen und topographische Aufnahmen weisen darauf hin, dass es auf Herschel Island und am King Point bis vor 300 Jahren eine Periode ausgeprägter, auftaubedingter Rutschungsaktivitäten ähnlich denen, die derzeit auf der Insel beobachtet werden können, gegeben haben muss, die zur Ausbildung dieser Oberflächenstrukturen geführt haben. Diese Arbeit stellt auf Grundlage der untersuchten Topographie und Kryostratigraphie die Hypothese auf, dass an der Küstenlinie von Herschel Island ein etwa 250-jähriger Zyklus von Rutschungsaktivitäten existiert und antizipiert eine höhere Frequenz im Auftreten dieser Rutschungsaktivitäten für die Zukunft. Die Vielfalt an Faktoren, die in dieser Arbeit beschrieben wurden, hebt die veränderte Intensität und Frequenz der auf arktische Küsten einwirkenden physikalischen Prozesse hervor. Dadurch werden auch aktuelle Auffassungen zur Bedrohung bestehender Industrie und Infrastruktur in der Arktis hinterfragt. Im Zusammenhang mit dem erwarteten Ausbau der Schifffahrt treibt der zunehmende anthropogene Einfluss die ökonomische und industrielle Entwicklung in arktischen Küstenregionen an, die Gegenstand einer wissenschaftlichen Betrachtung sein sollten. KW - Permafrost KW - Arktis KW - Küstenerosion KW - Thermokarst KW - permafrost KW - arctic KW - coastal erosion KW - thermokarst Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-19732 ER - TY - JOUR A1 - Schaefer, Kevin A1 - Lantuit, Hugues A1 - Romanovsky, Vladimir E. A1 - Schuur, Edward A. G. A1 - Witt, Ronald T1 - The impact of the permafrost carbon feedback on global climate JF - Environmental research letters N2 - Degrading permafrost can alter ecosystems, damage infrastructure, and release enough carbon dioxide (CO2) and methane (CH4) to influence global climate. The permafrost carbon feedback (PCF) is the amplification of surface warming due to CO2 and CH4 emissions from thawing permafrost. An analysis of available estimates PCF strength and timing indicate 120 +/- 85 Gt of carbon emissions from thawing permafrost by 2100. This is equivalent to 5.7 +/- 4.0% of total anthropogenic emissions for the Intergovernmental Panel on Climate Change (IPCC) representative concentration pathway (RCP) 8.5 scenario and would increase global temperatures by 0.29 +/- 0.21 degrees C or 7.8 +/- 5.7%. For RCP4.5, the scenario closest to the 2 degrees C warming target for the climate change treaty, the range of cumulative emissions in 2100 from thawing permafrost decreases to between 27 and 100 Gt C with temperature increases between 0.05 and 0.15 degrees C, but the relative fraction of permafrost to total emissions increases to between 3% and 11%. Any substantial warming results in a committed, long-term carbon release from thawing permafrost with 60% of emissions occurring after 2100, indicating that not accounting for permafrost emissions risks overshooting the 2 degrees C warming target. Climate projections in the IPCC Fifth Assessment Report (AR5), and any emissions targets based on those projections, do not adequately account for emissions from thawing permafrost and the effects of the PCF on global climate. We recommend the IPCC commission a special assessment focusing on the PCF and its impact on global climate to supplement the AR5 in support of treaty negotiation. KW - permafrost carbon feedback KW - permafrost KW - global climate Y1 - 2014 U6 - https://doi.org/10.1088/1748-9326/9/8/085003 SN - 1748-9326 VL - 9 IS - 8 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Klein, Konstantin P. A1 - Lantuit, Hugues A1 - Heim, Birgit A1 - Doxaran, David A1 - Juhls, Bennet A1 - Nitze, Ingmar A1 - Walch, Daniela A1 - Poste, Amanda A1 - Søreide, Janne E. T1 - The Arctic Nearshore Turbidity Algorithm (ANTA) BT - A multi sensor turbidity algorithm for Arctic nearshore environments JF - Science of remote sensing N2 - The Arctic is greatly impacted by climate change. The increase in air temperature drives the thawing of permafrost and an increase in coastal erosion and river discharge. This leads to a greater input of sediment and organic matter into coastal waters, which substantially impacts the ecosystems by reducing light transmission through the water column and altering the biogeochemistry, but also the subsistence economy of local people, and changes in climate because of the transformation of organic matter into greenhouse gases. Yet, the quantification of suspended sediment in Arctic coastal and nearshore waters remains unsatisfactory due to the absence of dedicated algorithms to resolve the high loads occurring in the close vicinity of the shoreline. In this study we present the Arctic Nearshore Turbidity Algorithm (ANTA), the first reflectance-turbidity relationship specifically targeted towards Arctic nearshore waters that is tuned with in-situ measurements from the nearshore waters of Herschel Island Qikiqtaruk in the western Canadian Arctic. A semi-empirical model was calibrated for several relevant sensors in ocean color remote sensing, including MODIS, Sentinel 3 (OLCI), Landsat 8 (OLI), and Sentinel 2 (MSI), as well as the older Landsat sensors TM and ETM+. The ANTA performed better with Landsat 8 than with Sentinel 2 and Sentinel 3. The application of the ANTA to Sentinel 2 imagery that matches in-situ turbidity samples taken in Adventfjorden, Svalbard, shows transferability to nearshore areas beyond Herschel Island Qikiqtaruk. KW - Ocean color remote sensing KW - Turbidity retrieval KW - Nearshore zone KW - Arctic Ocean Y1 - 2021 U6 - https://doi.org/10.1016/j.srs.2021.100036 SN - 2666-0172 VL - 4 PB - Elsevier CY - Amsterdam ER - TY - GEN A1 - Klein, Konstantin P. A1 - Lantuit, Hugues A1 - Heim, Birgit A1 - Doxaran, David A1 - Juhls, Bennet A1 - Nitze, Ingmar A1 - Walch, Daniela A1 - Poste, Amanda A1 - Søreide, Janne E. T1 - The Arctic Nearshore Turbidity Algorithm (ANTA) BT - A multi sensor turbidity algorithm for Arctic nearshore environments T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The Arctic is greatly impacted by climate change. The increase in air temperature drives the thawing of permafrost and an increase in coastal erosion and river discharge. This leads to a greater input of sediment and organic matter into coastal waters, which substantially impacts the ecosystems by reducing light transmission through the water column and altering the biogeochemistry, but also the subsistence economy of local people, and changes in climate because of the transformation of organic matter into greenhouse gases. Yet, the quantification of suspended sediment in Arctic coastal and nearshore waters remains unsatisfactory due to the absence of dedicated algorithms to resolve the high loads occurring in the close vicinity of the shoreline. In this study we present the Arctic Nearshore Turbidity Algorithm (ANTA), the first reflectance-turbidity relationship specifically targeted towards Arctic nearshore waters that is tuned with in-situ measurements from the nearshore waters of Herschel Island Qikiqtaruk in the western Canadian Arctic. A semi-empirical model was calibrated for several relevant sensors in ocean color remote sensing, including MODIS, Sentinel 3 (OLCI), Landsat 8 (OLI), and Sentinel 2 (MSI), as well as the older Landsat sensors TM and ETM+. The ANTA performed better with Landsat 8 than with Sentinel 2 and Sentinel 3. The application of the ANTA to Sentinel 2 imagery that matches in-situ turbidity samples taken in Adventfjorden, Svalbard, shows transferability to nearshore areas beyond Herschel Island Qikiqtaruk. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1250 KW - Ocean color remote sensing KW - Turbidity retrieval KW - Nearshore zone KW - Arctic Ocean Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-553692 SN - 1866-8372 IS - 1250 ER - TY - JOUR A1 - Stettner, Samuel A1 - Lantuit, Hugues A1 - Heim, Birgit A1 - Eppler, Jayson A1 - Roth, Achim A1 - Bartsch, Annett A1 - Rabus, Bernhard T1 - TerraSAR-X time series fill a gap in spaceborne snowmelt monitoring of small arctic catchments BT - a case study on qikiqtaruk (Herschel Island), Canada JF - Remote sensing N2 - The timing of snowmelt is an important turning point in the seasonal cycle of small Arctic catchments. The TerraSAR-X (TSX) satellite mission is a synthetic aperture radar system (SAR) with high potential to measure the high spatiotemporal variability of snow cover extent (SCE) and fractional snow cover (FSC) on the small catchment scale. We investigate the performance of multi-polarized and multi-pass TSX X-Band SAR data in monitoring SCE and FSC in small Arctic tundra catchments of Qikiqtaruk (Herschel Island) off the Yukon Coast in the Western Canadian Arctic. We applied a threshold based segmentation on ratio images between TSX images with wet snow and a dry snow reference, and tested the performance of two different thresholds. We quantitatively compared TSX- and Landsat 8-derived SCE maps using confusion matrices and analyzed the spatiotemporal dynamics of snowmelt from 2015 to 2017 using TSX, Landsat 8 and in situ time lapse data. Our data showed that the quality of SCE maps from TSX X-Band data is strongly influenced by polarization and to a lesser degree by incidence angle. VH polarized TSX data performed best in deriving SCE when compared to Landsat 8. TSX derived SCE maps from VH polarization detected late lying snow patches that were not detected by Landsat 8. Results of a local assessment of TSX FSC against the in situ data showed that TSX FSC accurately captured the temporal dynamics of different snow melt regimes that were related to topographic characteristics of the studied catchments. Both in situ and TSX FSC showed a longer snowmelt period in a catchment with higher contributions of steep valleys and a shorter snowmelt period in a catchment with higher contributions of upland terrain. Landsat 8 had fundamental data gaps during the snowmelt period in all 3 years due to cloud cover. The results also revealed that by choosing a positive threshold of 1 dB, detection of ice layers due to diurnal temperature variations resulted in a more accurate estimation of snow cover than a negative threshold that detects wet snow alone. We find that TSX X-Band data in VH polarization performs at a comparable quality to Landsat 8 in deriving SCE maps when a positive threshold is used. We conclude that TSX data polarization can be used to accurately monitor snowmelt events at high temporal and spatial resolution, overcoming limitations of Landsat 8, which due to cloud related data gaps generally only indicated the onset and end of snowmelt. KW - Snow Cover Extent (SCE) KW - TerraSAR-X KW - Landsat KW - wet snow KW - small Arctic catchments KW - satellite time series Y1 - 2018 U6 - https://doi.org/10.3390/rs10071155 SN - 2072-4292 VL - 10 IS - 7 PB - MDPI CY - Basel ER -