TY - BOOK A1 - Beyhl, Thomas A1 - Blouin, Dominique A1 - Giese, Holger A1 - Lambers, Leen T1 - On the operationalization of graph queries with generalized discrimination networks N2 - Graph queries have lately gained increased interest due to application areas such as social networks, biological networks, or model queries. For the relational database case the relational algebra and generalized discrimination networks have been studied to find appropriate decompositions into subqueries and ordering of these subqueries for query evaluation or incremental updates of query results. For graph database queries however there is no formal underpinning yet that allows us to find such suitable operationalizations. Consequently, we suggest a simple operational concept for the decomposition of arbitrary complex queries into simpler subqueries and the ordering of these subqueries in form of generalized discrimination networks for graph queries inspired by the relational case. The approach employs graph transformation rules for the nodes of the network and thus we can employ the underlying theory. We further show that the proposed generalized discrimination networks have the same expressive power as nested graph conditions. N2 - Graph-basierte Suchanfragen erfahren in jüngster Zeit ein zunehmendes Interesse durch Anwendungsdomänen wie zum Beispiel Soziale Netzwerke, biologische Netzwerke und Softwaremodelle. Für relationale Datenbanken wurden die relationale Algebra und sogenannte generalisierte Discrimination Networks bereits studiert um Suchanfragen angemessen in kleinere Suchanfragen für die inkrementelle Auswertung zu zerlegen und zu ordnen. Allerdings gibt es für Graphdatenbanken derzeit keine formale Grundlage, die es erlaubt solche Zerlegungen zu finden. Daher schlagen wir ein Konzept für die Zerlegung und Ordnung von komplexen Suchanfragen vor. Das Konzept basiert auf generalisierten Discrimination Networks, die aus relationalen Datenbanken bekannt sind. Der Ansatz verwendet Graphtransformationsregeln für Knoten in diesen Netzwerken, sodass die Theorie von Graphen und Graphtransformationen angewendet werden kann. Darüber hinaus zeigen wir auf, dass diese Discrimination Networks die gleiche Ausdrucksstärke besitzen wie Nested Graph Conditions. T3 - Technische Berichte des Hasso-Plattner-Instituts für Digital Engineering an der Universität Potsdam - 106 KW - graph queries KW - discrimination networks KW - incremental graph pattern matching KW - nested graph conditions KW - Graph-basierte Suche KW - Discrimination Networks KW - Inkrementelle Graphmustersuche KW - Nested Graph Conditions Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-96279 SN - 978-3-86956-372-5 SN - 1613-5652 SN - 2191-1665 IS - 106 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - JOUR A1 - Dyck, Johannes A1 - Giese, Holger A1 - Lambers, Leen T1 - Automatic verification of behavior preservation at the transformation level for relational model transformation JF - Software and systems modeling N2 - The correctness of model transformations is a crucial element for model-driven engineering of high-quality software. In particular, behavior preservation is an important correctness property avoiding the introduction of semantic errors during the model-driven engineering process. Behavior preservation verification techniques show some kind of behavioral equivalence or refinement between source and target model of the transformation. Automatic tool support is available for verifying behavior preservation at the instance level, i.e., for a given source and target model specified by the model transformation. However, until now there is no sound and automatic verification approach available at the transformation level, i.e., for all source and target models. In this article, we extend our results presented in earlier work (Giese and Lambers, in: Ehrig et al (eds) Graph transformations, Springer, Berlin, 2012) and outline a new transformation-level approach for the sound and automatic verification of behavior preservation captured by bisimulation resp.simulation for outplace model transformations specified by triple graph grammars and semantic definitions given by graph transformation rules. In particular, we first show how behavior preservation can be modeled in a symbolic manner at the transformation level and then describe that transformation-level verification of behavior preservation can be reduced to invariant checking of suitable conditions for graph transformations. We demonstrate that the resulting checking problem can be addressed by our own invariant checker for an example of a transformation between sequence charts and communicating automata. KW - Relational model transformation KW - Formal verification of behavior preservation KW - Behavioral equivalence and refinement KW - Bisimulation and simulation KW - Graph transformation KW - Triple graph grammars KW - Invariant checking Y1 - 2018 U6 - https://doi.org/10.1007/s10270-018-00706-9 SN - 1619-1366 SN - 1619-1374 VL - 18 IS - 5 SP - 2937 EP - 2972 PB - Springer CY - Heidelberg ER - TY - BOOK A1 - Dyck, Johannes A1 - Giese, Holger A1 - Lambers, Leen T1 - Automatic verification of behavior preservation at the transformation level for relational model transformation N2 - The correctness of model transformations is a crucial element for model-driven engineering of high quality software. In particular, behavior preservation is the most important correctness property avoiding the introduction of semantic errors during the model-driven engineering process. Behavior preservation verification techniques either show that specific properties are preserved, or more generally and complex, they show some kind of behavioral equivalence or refinement between source and target model of the transformation. Both kinds of behavior preservation verification goals have been presented with automatic tool support for the instance level, i.e. for a given source and target model specified by the model transformation. However, up until now there is no automatic verification approach available at the transformation level, i.e. for all source and target models specified by the model transformation. In this report, we extend our results presented in [27] and outline a new sophisticated approach for the automatic verification of behavior preservation captured by bisimulation resp. simulation for model transformations specified by triple graph grammars and semantic definitions given by graph transformation rules. In particular, we show that the behavior preservation problem can be reduced to invariant checking for graph transformation and that the resulting checking problem can be addressed by our own invariant checker even for a complex example where a sequence chart is transformed into communicating automata. We further discuss today's limitations of invariant checking for graph transformation and motivate further lines of future work in this direction. N2 - Die Korrektheit von Modelltransformationen ist von zentraler Wichtigkeit bei der Anwendung modellgetriebener Softwareentwicklung für die Entwicklung hochqualitativer Software. Insbesondere verhindert Verhaltensbewahrung als wichtigste Korrektheitseigenschaft die Entstehung semantischer Fehler während des modellgetriebenen Entwicklungsprozesses. Techniken zur Verifikation von Verhaltensbewahrung zeigen, dass bestimmte spezifische Eigenschaften bewahrt bleiben oder, im allgemeineren und komplexeren Fall, dass eine Form von Verhaltensäquivalenz oder Verhaltensverfeinerung zwischen Quell- und Zielmodell der Transformation besteht. Für beide Ansätze existieren automatisierte Werkzeuge für die Verifikation auf der Instanzebene, also zur Überprüfung konkreter Paare aus Quell- und Zielmodellen der Transformation. Allerdings existiert kein automatischer Verifikationsansatz, der auf der Transformationsebene arbeitet, also Aussagen zu allen Quell- und Zielmodellen einer Modelltransformation treffen kann. Dieser Bericht erweitert unsere Vorarbeit und Ergebnisse aus [27] und stellt einen neuen Ansatz zur automatischen Verifikation von Verhaltensbewahrung vor, der auf Bisimulation bzw. Simulation basiert. Dabei werden Modelltransformationen durch Triple-Graph-Grammatiken und Verhaltensdefinitionen mittels Graphtransformationsregeln beschrieben. Insbesondere weisen wir nach, dass das Problem der Verhaltensbewahrung durch Bisimulation auf Invariant-Checking für Graphtransformationssysteme reduziert werden kann und dass das entstehende Invariant-Checking-Problem für ein komplexes Beispiel durch unser Werkzeug zur Verifikation induktiver Invarianten gelöst werden kann. Das Beispiel beschreibt die Transformation von Sequenzdiagrammen in Systeme kommunizierender Automaten. Darüber hinaus diskutieren wir bestehende Einschränkungen von Invariant-Checking für Graphtransformationssysteme und Ansätze für zukünftige Arbeiten in diesem Bereich. T3 - Technische Berichte des Hasso-Plattner-Instituts für Digital Engineering an der Universität Potsdam - 112 KW - model transformation KW - behavior preservation KW - semantics preservation KW - relational model transformation KW - bisimulation KW - simulation KW - invariant checking KW - transformation level KW - behavioral equivalenc KW - behavioral refinement KW - behavioral abstraction KW - graph transformation systems KW - graph constraints KW - triple graph grammars KW - Modelltransformationen KW - Verhaltensbewahrung KW - relationale Modelltransformationen KW - Bisimulation KW - Simulation KW - Invariant-Checking KW - Transformationsebene KW - Verhaltensäquivalenz KW - Verhaltensverfeinerung KW - Verhaltensabstraktion KW - Graphtransformationssysteme KW - Graph-Constraints KW - Triple-Graph-Grammatiken Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-100279 SN - 978-3-86956-391-6 SN - 1613-5652 SN - 2191-1665 IS - 112 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - BOOK A1 - Giese, Holger A1 - Hildebrandt, Stephan A1 - Lambers, Leen T1 - Toward bridging the gap between formal semantics and implementation of triple graph grammars N2 - The correctness of model transformations is a crucial element for the model-driven engineering of high quality software. A prerequisite to verify model transformations at the level of the model transformation specification is that an unambiguous formal semantics exists and that the employed implementation of the model transformation language adheres to this semantics. However, for existing relational model transformation approaches it is usually not really clear under which constraints particular implementations are really conform to the formal semantics. In this paper, we will bridge this gap for the formal semantics of triple graph grammars (TGG) and an existing efficient implementation. Whereas the formal semantics assumes backtracking and ignores non-determinism, practical implementations do not support backtracking, require rule sets that ensure determinism, and include further optimizations. Therefore, we capture how the considered TGG implementation realizes the transformation by means of operational rules, define required criteria and show conformance to the formal semantics if these criteria are fulfilled. We further outline how static analysis can be employed to guarantee these criteria. T3 - Technische Berichte des Hasso-Plattner-Instituts für Digital Engineering an der Universität Potsdam - 37 Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-45219 SN - 978-3-86956-078-6 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - JOUR A1 - Giese, Holger A1 - Hildebrandt, Stephan A1 - Lambers, Leen T1 - Bridging the gap between formal semantics and implementation of triple graph grammars JF - Software and systems modeling N2 - The correctness of model transformations is a crucial element for model-driven engineering of high-quality software. A prerequisite to verify model transformations at the level of the model transformation specification is that an unambiguous formal semantics exists and that the implementation of the model transformation language adheres to this semantics. However, for existing relational model transformation approaches, it is usually not really clear under which constraints particular implementations really conform to the formal semantics. In this paper, we will bridge this gap for the formal semantics of triple graph grammars (TGG) and an existing efficient implementation. While the formal semantics assumes backtracking and ignores non-determinism, practical implementations do not support backtracking, require rule sets that ensure determinism, and include further optimizations. Therefore, we capture how the considered TGG implementation realizes the transformation by means of operational rules, define required criteria, and show conformance to the formal semantics if these criteria are fulfilled. We further outline how static and runtime checks can be employed to guarantee these criteria. Y1 - 2014 U6 - https://doi.org/10.1007/s10270-012-0247-y SN - 1619-1366 SN - 1619-1374 VL - 13 IS - 1 SP - 273 EP - 299 PB - Springer CY - Heidelberg ER -