TY - JOUR A1 - Witzorky, Christoph A1 - Paramonov, Guennaddi A1 - Bouakline, Foudhil A1 - Jaquet, Ralph A1 - Saalfrank, Peter A1 - Klamroth, Tillmann T1 - Gaussian-type orbital calculations for high harmonic generation in vibrating molecules BT - Benchmarks for H-2(+) JF - Journal of chemical theory and computation N2 - The response of the hydrogen molecular ion, H-2(+), to few-cycle laser pulses of different intensities is simulated. To treat the coupled electron-nuclear motion, we use adiabatic potentials computed with Gaussian-type basis sets together with a heuristic ionization model for the electron and a grid representation for the nuclei. Using this mixed-basis approach, the time-dependent Schrodinger equation is solved, either within the Born-Oppenheimer approximation or with nonadiabatic couplings included. The dipole response spectra are compared to all-grid-based solutions for the three-body problem, which we take as a reference to benchmark the Gaussian-type basis set approaches. Also, calculations employing the fixed-nuclei approximation are performed, to quantify effects due to nuclear motion. For low intensities and small ionization probabilities, we get excellent agreement of the dynamics using Gaussian-type basis sets with the all-grid solutions. Our investigations suggest that high harmonic generation (HHG) and high-frequency response, in general, can be reliably modeled using Gaussian-type basis sets for the electrons for not too high harmonics. Further, nuclear motion destroys electronic coherences in the response spectra even on the time scale of about 30 fs and affects HHG intensities, which reflect the electron dynamics occurring on the attosecond time scale. For the present system, non-Born-Oppenheimer effects are small. The Gaussian-based, nonadiabatically coupled, time-dependent multisurface approach to treat quantum electron-nuclear motion beyond the non-Born-Oppenheimer approximation can be easily extended to approximate wavefunction methods, such as time-dependent configuration interaction singles (TD-CIS), for systems where no benchmarks are available. KW - Basis sets KW - Chemical calculations KW - Ionization KW - Lasers KW - Quantum mechanics Y1 - 2021 U6 - https://doi.org/10.1021/acs.jctc.1c00837 SN - 1549-9618 SN - 1549-9626 VL - 17 IS - 12 SP - 7353 EP - 7365 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Füchsel, Gernot A1 - Klamroth, Tillmann A1 - Dokic, Jadranka A1 - Saalfrank, Peter T1 - On the electronic structure of neutral and ionic azobenzenes and their possible role as surface mounted molecular switches JF - The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces & biophysical chemistry N2 - We report quantum chemical calculations, mostly based on density functional theory, on azobenzene and substituted azobenzenes as neutral molecules or ions, in ground and excited states. Both the cis and trans configurations are computed as well as the activation energies to transform one isomer into the other and the possible reaction paths and reaction surfaces along the torsion and inversion modes. All calculations are done for the isolated species, but results are discussed in light of recent experiments aiming at the switching of surface mounted azobenzenes by scanning tunneling microscopes. Y1 - 2006 U6 - https://doi.org/10.1021/jp060969v SN - 1520-6106 VL - 110 IS - 33 SP - 16337 EP - 16345 PB - Soc. CY - Washington ER - TY - JOUR A1 - Schönborn, Jan Boyke A1 - Saalfrank, Peter A1 - Klamroth, Tillmann T1 - Controlling the high frequency response of H-2 by ultra-short tailored laser pulses: A time-dependent configuration interaction study JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr N2 - We combine the stochastic pulse optimization (SPO) scheme with the time-dependent configuration interaction singles method in order to control the high frequency response of a simple molecular model system to a tailored femtosecond laser pulse. For this purpose, we use H-2 treated in the fixed nuclei approximation. The SPO scheme, as similar genetic algorithms, is especially suited to control highly non-linear processes, which we consider here in the context of high harmonic generation. Here, we will demonstrate that SPO can be used to realize a "non-harmonic" response of H2 to a laser pulse. Specifically, we will show how adding low intensity side frequencies to the dominant carrier frequency of the laser pulse and stochastically optimizing their contribution can create a high-frequency spectral signal of significant intensity, not harmonic to the carrier frequency. At the same time, it is possible to suppress the harmonic signals in the same spectral region, although the carrier frequency is kept dominant during the optimization. (C) 2016 AIP Publishing LLC. Y1 - 2016 U6 - https://doi.org/10.1063/1.4940316 SN - 0021-9606 SN - 1089-7690 VL - 144 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Bedurke, Florian A1 - Klamroth, Tillmann A1 - Krause, Pascal A1 - Saalfrank, Peter T1 - Discriminating organic isomers by high harmonic generation BT - A time-dependent configuration interaction singles study JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr N2 - High Harmonic Generation (HHG) is a nonlinear optical process that provides a tunable source for high-energy photons and ultrashort laser pulses. Recent experiments demonstrated that HHG spectroscopy may also be used as an analytical tool to discriminate between randomly oriented configurational isomers of polyatomic organic molecules, namely, between the cis- and trans-forms of 1,2-dichloroethene (DCE) [M. C. H. Wong et al., Phys. Rev. A 84, 051403 (2011)]. Here, we suggest as an economic and at the same time a reasonably accurate method to compute HHG spectra for polyatomic species, Time-Dependent Configuration Interaction Singles (TD-CIS) theory in combination with extended atomic orbital bases and different models to account for ionization losses. The HHG spectra are computed for aligned and unaligned cis- and trans-DCE. For the unaligned case, a coherent averaging over possible rotational orientations is introduced. Furthermore, using TD-CIS, possible differences between the HHG spectra of cis- and trans-DCE are studied. For aligned molecules, spectral differences between cis and trans emerge, which can be related to their different point group symmetries. For unaligned, randomly oriented molecules, we also find distinct HHG spectra in partial agreement with experiment. In addition to HHG response in the frequency space, we compute time-frequency HHG spectra to gain insight into which harmonics are emitted at which time. Further differences between the two isomers emerge, suggesting time-frequency HHG as another tool to discriminate configurational isomers. Y1 - 2019 U6 - https://doi.org/10.1063/1.5096473 SN - 0021-9606 SN - 1089-7690 VL - 150 IS - 23 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Schwarze, Thomas A1 - Mickler, Wulfhard A1 - Dosche, Carsten A1 - Flehr, Roman A1 - Klamroth, Tillmann A1 - Löhmannsröben, Hans-Gerd A1 - Saalfrank, Peter A1 - Holdt, Hans-Jürgen T1 - Systematic investigation of photoinduced electron transfer controlled by internal charge transfer and its consequences for selective PdCl2 coordination N2 - Fluoroionophores of fluorophore-spacer-receptor format were prepared for detection of PdCl2 by fluorescence enhancement. The fluorophore probes 1-13 consist of a fluorophore group, in alkyl spacer and a dithiomaleonitrile PdCl2 receptor. First, varying the length of the alkylene spacer (compounds 1-3) revealed, dominant through-space pathway for oxidative photoinduced electron transfer (PET) in CH2-bridged dithiomaleonitrile fluoroionophores. Second. fluorescent probes 4-9 containing two anthracene or pyrene fragments connected through CH2 bridges to the dithiomaleonitrile unit were synthesized. Modulation of the oxidation potential (E-Ox) through electron-withdrawing or -donating groups on the anthracene moiety regulates file thermodynamic driving force for oxidative PET (Delta G(PET)) in bis(anthrylmethylthio)maleonitriles and therefore the fluorescence quantum yields (Phi(f)), too. The new concept was confirmed and transferred to pyrenyl ligands, and fluorescence enhancements (FE) greater than 3.2 in the presence of PdCl2 were achieved by 7 and 8 (FE=5.4 and 5.2). Finally, for comparison, monofluorophore ligands 10-13 were synthesized. Y1 - 2010 UR - http://onlinelibrary.wiley.com/doi/10.1002/chem.200902281/pdf U6 - https://doi.org/10.1002/chem.200902281 SN - 0947-6539 ER - TY - JOUR A1 - Schwarze, Thomas A1 - Mickler, Wulfhard A1 - Dosche, Carsten A1 - Flehr, Roman A1 - Klamroth, Tillmann A1 - Löhmannsröben, Hans-Gerd A1 - Saalfrank, Peter A1 - Holdt, Hans-Jürgen T1 - Systematic investigation of photoinduced electron transfer controlled by internal charge transfer and its consequences for selective PdCl2 coordination N2 - Fluoroionophores of fluorophore-spacer-receptor format were prepared for detection of PdCl2 by fluorescence enhancement. The fluorescent probes 1-13 consist of a fluorophore group, an alkyl spacer and a dithiomaleonitrile PdCl2 receptor. First, varying the length of the alkylene spacer (compounds 1-3) revealed a dominant through-space pathway for oxidative photoinduced electron transfer (PET) in CH2-bridged dithiomaleonitrile fluoroionophores. Second, fluorescent probes 4-9 containing two anthracene or pyrene fragments connected through CH2 bridges to the dithiomaleonitrile unit were synthesized. Modulation of the oxidation potential (EOx) through electron-withdrawing or -donating groups on the anthracene moiety regulates the thermodynamic driving force for oxidative PET (GPET) in bis(anthrylmethylthio)maleonitriles and therefore the fluorescence quantum yields (f), too. The new concept was confirmed and transferred to pyrenyl ligands, and fluorescence enhancements (FE) greater than 3.2 in the presence of PdCl2 were achieved by 7 and 8 (FE=5.4 and 5.2). Finally, for comparison, monofluorophore ligands 10-13 were synthesized. Y1 - 2010 UR - http://www3.interscience.wiley.com/journal/26293/home SN - 0947-6539 ER - TY - JOUR A1 - Nest, Mathias A1 - Ludwig, M. A1 - Ulusoy, I. A1 - Klamroth, Tillmann A1 - Saalfrank, Peter T1 - Electron correlation dynamics in atoms and molecules JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr N2 - In this paper, we present quantum dynamical calculations on electron correlation dynamics in atoms and molecules using explicitly time-dependent ab initio configuration interaction theory. The goals are (i) to show that in which cases it is possible to switch off the electronic correlation by ultrashort laser pulses, and (ii) to understand the temporal evolution and the time scale on which it reappears. We characterize the appearance of correlation through electron-electron scattering when starting from an uncorrelated state, and we identify pathways for the preparation of a Hartree-Fock state from the correlated, true ground state. Exemplary results for noble gases, alkaline earth elements, and selected molecules are provided. For Mg we show that the uncorrelated state can be prepared using a shaped ultrashort laser pulse. Y1 - 2013 U6 - https://doi.org/10.1063/1.4801867 SN - 0021-9606 SN - 1089-7690 VL - 138 IS - 16 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Füchsel, Gernot A1 - Klamroth, Tillmann A1 - Monturet, Serge A1 - Saalfrank, Peter T1 - Dissipative dynamics within the electronic friction approach the femtosecond laser desorption of H-2/D-2 from Ru(0001) JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - An electronic friction approach based on Langevin dynamics is used to describe the multidimensional (six-dimensional) dynamics of femtosecond laser induced desorption of H-2 and D-2 from a H(D)-covered Ru(0001) surface. The paper extends previous reduced-dimensional models, using a similar approach. In the present treatment forces and frictional coefficients are calculated from periodic density functional theory (DFT) and essentially parameter-free, while the action of femtosecond laser pulses on the metal surface is treated by using the two-temperature model. Our calculations shed light on the performance and validity of various adiabatic, non-adiabatic, and Arrhenius/Kramers type kinetic models to describe hot-electron mediated photoreactions at metal surfaces. The multidimensional frictional dynamics are able to reproduce and explain known experimental facts, such as strong isotope effects, scaling of properties with laser fluence, and non-equipartitioning of vibrational, rotational, and translational energies of desorbing species. Further, detailed predictions regarding translations are made, and the question for the controllability of photoreactions at surfaces with the help of vibrational preexcitation is addressed. Y1 - 2011 U6 - https://doi.org/10.1039/c0cp02086a SN - 1463-9076 VL - 13 IS - 19 SP - 8659 EP - 8670 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Utecht, Manuel Martin A1 - Klamroth, Tillmann A1 - Saalfrank, Peter T1 - Optical absorption and excitonic coupling in azobenzenes forming self-assembled monolayers a study based on density functional theory JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - Based on the analysis of optical absorption spectra, it has recently been speculated that the excitonic coupling between individual azobenzene-functionalized alkanethiols arranged in a self-assembled monolayer (SAM) on a gold surface could be strong enough to hinder collective trans-cis isomerization-on top of steric hindrance [Gahl et al., J. Am. Chem. Soc., 2010, 132, 1831]. Using models of SAMs of increasing complexity (dimer, linear N-mers, and two-dimensionally arranged N-mers) and density functional theory on the (TD-) B3LYP/6-31G* level, we determine optical absorption spectra, the nature and magnitude of excitonic couplings, and the corresponding spectral shifts. It is found that at inter-monomer distances of about 20 angstrom and above, TD-B3LYP excitation frequencies (and signal intensities) can be well described by the frequently used point-dipole approximation. Further, calculated blue shifts in optical absorption spectra account for the experimental observations made for azobenzene/gold SAMs, and hint to the fact that they can indeed be responsible for reduced switching probability in densely packed self-assembled structures. Y1 - 2011 U6 - https://doi.org/10.1039/c1cp22793a SN - 1463-9076 VL - 13 IS - 48 SP - 21608 EP - 21614 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Tremblay, Jean Christophe A1 - Klinkusch, Stefan A1 - Klamroth, Tillmann A1 - Saalfrank, Peter T1 - Dissipative many-electron dynamics of ionizing systems JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr N2 - In this paper, we perform many-electron dynamics using the time-dependent configuration-interaction method in its reduced density matrix formulation (rho-TDCI). Dissipation is treated implicitly using the Lindblad formalism. To include the effect of ionization on the state-resolved dynamics, we extend a recently introduced heuristic model for ionizing states to the rho-TDCI method, which leads to a reduced density matrix evolution that is not norm-preserving. We apply the new method to the laser-driven excitation of H(2) in a strongly dissipative environment, for which the state-resolve lifetimes are tuned to a few femtoseconds, typical for dynamics of adsorbate at metallic surfaces. Further testing is made on the laser-induced intramolecular charge transfer in a quinone derivative as a model for a molecular switch. A modified scheme to treat ionizing states is proposed to reduce the computational burden associated with the density matrix propagation, and it is thoroughly tested and compared to the results obtained with the former model. The new approach scales favorably (similar to N(2)) with the number of configurations N used to represent the reduced density matrix in the rho-TDCI method, as compared to a N(3) scaling for the model in its original form. Y1 - 2011 U6 - https://doi.org/10.1063/1.3532410 SN - 0021-9606 VL - 134 IS - 4 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Malic, E. A1 - Weber, C. A1 - Richter, M. A1 - Atalla, V. A1 - Klamroth, Tillmann A1 - Saalfrank, Peter A1 - Reich, Sebastian A1 - Knorr, A. T1 - Microscopic model of the optical absorption of carbon nanotubes functionalized with molecular spiropyran photoswitches JF - Physical review letters N2 - The adsorption of molecules to the surface of carbon nanostructures opens a new field of hybrid systems with distinct and controllable properties. We present a microscopic study of the optical absorption in carbon nanotubes functionalized with molecular spiropyran photoswitches. The switching process induces a change in the dipole moment leading to a significant coupling to the charge carriers in the nanotube. As a result, the absorption spectra of functionalized tubes reveal a considerable redshift of transition energies depending on the switching state of the spiropyran molecule. Our results suggest that carbon nanotubes are excellent substrates for the optical readout of spiropyran-based molecular switches. The gained insights can be applied to other noncovalently functionalized one-dimensional nanostructures in an externally induced dipole field. Y1 - 2011 U6 - https://doi.org/10.1103/PhysRevLett.106.097401 SN - 0031-9007 VL - 106 IS - 9 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Floss, Gereon A1 - Klamroth, Tillmann A1 - Saalfrank, Peter T1 - Laser-controlled switching of molecular arrays in an dissipative environment JF - Physical review : B, Condensed matter and materials physics N2 - The optical switching of molecular ensembles in a dissipative environment is a subject of various fields of chemical physics and physical chemistry. Here we try to switch arrays of molecules from a stable collective ground state to a state in which all molecules have been transferred to another stable higher-energy configuration. In our model switching proceeds through electronically excited intermediates which are coherently coupled to each other through dipolar interactions, and which decay incoherently within a finite lifetime by coupling to a dissipative environment. The model is quite general, but parameters are chosen to roughly resemble the all-trans -> all-cis isomerization of an array of azobenzene molecules on a surface. Using analytical and optimal control pulses and the concept of "laser distillation," we demonstrate that for various aggregates (dimers up to hexamers), controlled and complete switching should be possible. Y1 - 2011 U6 - https://doi.org/10.1103/PhysRevB.83.104301 SN - 1098-0121 VL - 83 IS - 10 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Wirth, Jonas A1 - Monturet, Serge A1 - Klamroth, Tillmann A1 - Saalfrank, Peter T1 - Adsorption and (photo-) electrochemical splitting of water on rutile ruthenium dioxide JF - epl : a letters journal exploring the frontiers of physics N2 - In this work, the adsorption and splitting of the water molecule by light and/or an external potential is investigated in the frame of (photo-) electrochemical cells using a rutile ruthenium dioxide anode. With the help of periodic density functional calculations, the adsorbed structures of H(2)O and some radicals involved in the splitting process (O, OH, OOH) are obtained and compared with the available experimental results. On the basis of these electronic-structure calculations, we use a method to calculate the stability of the reaction intermediates and conclude on the thermodynamical possibility of the water splitting reaction at the surface. We demonstrate that a moderate overpotential of 0.64 V is required for the reaction to take place at the RuO(2)(110) surface. Y1 - 2011 U6 - https://doi.org/10.1209/0295-5075/93/68001 SN - 0295-5075 VL - 93 IS - 6 PB - EDP Sciences CY - Mulhouse ER - TY - JOUR A1 - Klinkusch, Stefan A1 - Klamroth, Tillmann A1 - Saalfrank, Peter T1 - Long-range intermolecular charge transfer induced by laser pulses : an explicitly time-dependent configuration interaction approach N2 - In this paper, we report simulations of laser-driven many-electron dynamics by means of the time-dependent configuration interaction singles (TD-CIS) approach. The method is capable of describing explicitly time-dependent phenomena beyond perturbation theory and is systematically improvable. In contrast to most time-dependent density functional methods it also allows us to treat long-range charge-transfer states properly. As an example, the laser-pulse induced charge transfer between a donor (ethylene) and an acceptor molecule (tetracyanoethylene, TCNE) is studied by means of TD-CIS. Also, larger aggregates consisting of several donors and/or acceptors are considered. It is shown that the charge distribution and hence the dipole moments of the systems under study are switchable by (a series of) laser pulses which induce selective, state-to-state electronic transitions. Y1 - 2009 UR - http://xlink.rsc.org/jumptojournal.cfm?journal_code=CP U6 - https://doi.org/10.1039/B817873a SN - 1463-9076 ER - TY - JOUR A1 - Tremblay, Jean Christophe A1 - Krause, Pascal A1 - Klamroth, Tillmann A1 - Saalfrank, Peter T1 - Time-dependent response of dissipative electron systems N2 - We present a systematic study of the influence of energy and phase relaxation on dynamic polarizability simulations in the linear response regime. The nonperturbative approach is based on explicit electron dynamics using short laser pulses of low intensities. To include environmental effects on the property calculation, we use the time- dependent configuration-interaction method in its reduced density matrix formulation. Both energy dissipation and nonlocal pure dephasing are included. The explicit treatment of time-resolved electron dynamics gives access to the phase shift between the electric field and the induced dipole moment, which can be used to define a useful uncertainty measure for the dynamic polarizability. The nonperturbative treatment is compared to perturbation theory expressions, as applied to a simple model system, the rigid H-2 molecule. It is shown that both approaches are equivalent for low field intensities, but the time-dependent treatment provides complementary information on the phase of the induced dipole moment, which allows for the definition of an uncertainty associated with the computation of the dynamic polarizability in the linear response regime. Y1 - 2010 UR - http://pra.aps.org/ U6 - https://doi.org/10.1103/Physreva.81.063420 SN - 1050-2947 ER - TY - JOUR A1 - Klinkusch, Stefan A1 - Saalfrank, Peter A1 - Klamroth, Tillmann T1 - Laser-induced electron dynamics including photoionization : a heuristic model within time-dependent configuration interaction theory N2 - We report simulations of laser-pulse driven many-electron dynamics by means of a simple, heuristic extension of the time-dependent configuration interaction singles (TD-CIS) approach. The extension allows for the treatment of ionizing states as nonstationary states with a finite, energy-dependent lifetime to account for above-threshold ionization losses in laser-driven many-electron dynamics. The extended TD-CIS method is applied to the following specific examples: (i) state-to-state transitions in the LiCN molecule which correspond to intramolecular charge transfer, (ii) creation of electronic wave packets in LiCN including wave packet analysis by pump-probe spectroscopy, and, finally, (iii) the effect of ionization on the dynamic polarizability of H-2 when calculated nonperturbatively by TD-CIS. Y1 - 2009 UR - http://jcp.aip.org/ U6 - https://doi.org/10.1063/1.3218847 SN - 0021-9606 ER - TY - JOUR A1 - Krause, Pascal A1 - Klamroth, Tillmann A1 - Saalfrank, Peter T1 - Time-dependent configuration-interaction calculations of laser-pulse-driven many-electron dynamics : Controlled dipole switching in lithium cyanide N2 - We report simulations of laser-driven many-electron dynamics by means of the time-dependent configuration interaction singles (doubles) approach. The method accounts for the correlation of ground and excited states, is capable of describing explicitly time-dependent, nonlinear phenomena, and is systematically improvable. Lithium cyanide serves as a molecular test system in which the charge distribution and hence the dipole moment are shown to be switchable, in a controlled fashion, by (a series of) laser pulses which induce selective, state-to-state electronic transitions. One focus of our time-dependent calculations is the question of how fast the transition from the ionic ground state to a specific excited state that is embedded in a multitude of other states can be made, without creating an electronic wave packet. (c) 2005 American Institute of Physics Y1 - 2005 SN - 0021-9606 ER - TY - JOUR A1 - Andrianov, Igor V. A1 - Klamroth, Tillmann A1 - Saalfrank, Peter A1 - Bovensiepen, U. A1 - Gahl, Cornelius A1 - Wolf, M. M. T1 - Quantum theoretical study of electron solvation dynamics in ice layers on a Cu(111) surface N2 - Recent experiments using time- and angle-resolved two-photon photoemission (2PPE) spectroscopy at metal/polar adsorbate interfaces succeeded in time-dependent analysis of the process of electron solvation. A fully quantum mechanical, two-dimensional simulation of this process, which explicitly includes laser excitation, is presented here, confirming the origin of characteristic features, such as the experimental observation of an apparently negative dispersion. The inference of the spatial extent of the localized electron states from the angular dependence of the 2PPE spectra has been found to be non-trivial and system-dependent. (C) 2005 American Institute of Physics Y1 - 2005 SN - 0021-9606 ER - TY - JOUR A1 - Nacci, Christophe A1 - Foelsch, Stefan A1 - Zenichowski, Karl A1 - Dokic, Jadranka A1 - Klamroth, Tillmann A1 - Saalfrank, Peter T1 - Current versus temperature-induced switching in a single-molecule tunnel junction : 1,5 cyclooctadiene on Si(001) N2 - The biconformational switching of single cyclooctadiene molecules chemisorbed on a Si(001) surface was explored by quantum chemical and quantum dynamical calculations and low-temperature scanning tunneling microscopy experiments. The calculations rationalize the experimentally observed switching driven by inelastic electron tunneling (IET) at 5 K. At higher temperatures, they predict a controllable crossover behavior between IET-driven and thermally activated switching, which is fully confirmed by experiment. Y1 - 2009 UR - http://pubs.acs.org/journal/nalefd U6 - https://doi.org/10.1021/Nl901419g SN - 1530-6984 ER - TY - JOUR A1 - Zenichowski, Karl A1 - Dokic, Jadranka A1 - Klamroth, Tillmann A1 - Saalfrank, Peter T1 - Current versus temperature-induced switching of a single molecule - open-system density matrix theory for 1,5-cyclooctadiene on Si(100) JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr N2 - The switching of single cyclooctadiene molecules chemisorbed on a Si(100) surface between two stable conformations, can be achieved with a scanning tunneling microscope [Nacci , Phys. Rev. B 77, 121405(R) (2008)]. Recently, it was shown by quantum chemical and quantum dynamical simulations that major experimental facts can be explained by a single-mode model with switching enforced by inelastic electron tunneling (IET) excitations and perturbed by vibrational relaxation [Nacci , Nano Lett. 9, 2997 (2009)]. In the present paper, we extend the previous theoretical work in several respects: (1) The model is generalized to a two-mode description in which two C2H4 units of COD can move independently; (2) contributions of dipole and, in addition, (cation and anion) resonance-IET rates are considered; (3) the harmonic-linear vibrational relaxation model used previously is generalized to anharmonic vibrations. While the present models highlight generic aspects of IET-switching between two potential minima, they also rationalize specific experimental findings for COD/Si(100): (1) A single-electron excitation mechanism with a linear dependence of the switching rate on tunneling current I, (2) the capability to switch both at negative and positive sample biases, and (3) a crossover temperature around similar to 60 K from an IET-driven, T-independent atom tunneling regime, to classical over-the-barrier isomerization with exponential T-dependence at higher temperatures for a bias voltage of +1.5 V and an average tunneling current of 0.73 nA. Y1 - 2012 U6 - https://doi.org/10.1063/1.3692229 SN - 0021-9606 VL - 136 IS - 9 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Füchsel, Gernot A1 - Tremblay, Jean Christophe A1 - Klamroth, Tillmann A1 - Saalfrank, Peter T1 - Selective excitation of molecule-surface vibrations in H2 and D2 dissociatively adsorbed on Ru(0001) JF - Israel journal of chemistry N2 - In this contribution we report about the selective vibrational excitation of H2 and D2 on Ru(0001) as an example for nonadiabatic coupling of an open quantum system to a dissipative environment. We investigate the possibility of achieving state-selective vibrational excitations of H2 and D2 adsorbed on a Ru(0001) surface using picosecond infrared laser pulses. The systems behavior is explored using pulses that are rationally designed and others that are optimized using a time-local variant of Optimal Control Theory. The effects of dissipation on the laser-driven dynamics are studied using the reduced-density matrix formalism. The non-adiabatic couplings between adsorbate and surface are computed perturbatively, for which our recently introduced state-resolved anharmonic rate model is used. It is shown that mode- and state-selective excitation can be achieved in the absence of dissipation when using optimized laser pulses. The inclusion of dissipation in the model reduces the state selectivity and the population transfer yield to highly excited states. In this case, mode activation is most effectively realized by a rational pulse of carefully chosen duration rather than by a locally optimized pulse. KW - dissipative dynamics KW - photochemistry KW - quantum control KW - surface chemistry Y1 - 2012 U6 - https://doi.org/10.1002/ijch.201100097 SN - 0021-2148 VL - 52 IS - 5 SP - 438 EP - 451 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Saalfrank, Peter A1 - Klamroth, Tillmann A1 - Huber, C. A1 - Krause, Pascal T1 - Laser-driven electron dynamics at interfaces N2 - In this paper we present time-dependent, quantum-dynamical simulations of photoinduced processes at solid surfaces involving nonadiabatic transitions of electrons to and from short-lived intermediate excited states. In particular, two-photon photoemission (2PPE) spectra of naked metal surfaces and free-standing metal films are considered. One major problem in both cases is the presence of electron-electron scattering, which is treated here in various ways. The first way is to adopt an open-system density matrix approach, in which a single electron is weakly coupled to a "bath" of other electrons. The second approach is based on a many-electron Schrodinger equation, which is solved with the help of a time-dependent configuration interactions singles (TD-CIS) method Y1 - 2005 SN - 0021-2148 ER - TY - JOUR A1 - Schwarze, Thomas A1 - Dosche, Carsten A1 - Flehr, Roman A1 - Klamroth, Tillmann A1 - Löhmannsröben, Hans-Gerd A1 - Saalfrank, Peter A1 - Cleve, Ernst A1 - Buschmann, Hans-Jürgen A1 - Holdt, Hans-Jürgen T1 - Combination of a CT modulated PET and an intramolecular excimer formation to quantify PdCl2 by large fluorescence enhancement N2 - The [6.6](9,10)anthracenophane 1 (Scheme 1) is a selective fluoroionophore for the detection of PdCl2 with a large fluorescence enhancement factor (I/I-0 > 250). Y1 - 2010 UR - http://pubs.rsc.org/en/content/articlehtml/2010/cc/b919973j U6 - https://doi.org/10.1039/B919973j SN - 1359-7345 ER - TY - JOUR A1 - Nest, Mathias A1 - Klamroth, Tillmann A1 - Saalfrank, Peter T1 - The multiconfiguration time-dependent Hartree-Fock method for quantum chemical calculations N2 - We apply the multiconfiguration time-dependent Hartree-Fock method to electronic structure calculations and show that quantum chemical information can be obtained with this explicitly time-dependent approach. Different equations of motion are discussed, as well as the numerical cost. The two-electron integrals are calculated using a natural potential expansion, of which we describe the convergence behavior in detail Y1 - 2005 SN - 0021-9606 ER - TY - JOUR A1 - Schwarze, Thomas A1 - Dosche, Carsten A1 - Flehr, Roman A1 - Klamroth, Tillmann A1 - Löhmannsröben, Hans-Gerd A1 - Saalfrank, Peter A1 - Cleve, Ernst A1 - Buschmann, Hans-Jürgen A1 - Holdt, Hans-Jürgen T1 - Combination of a CT modulated PET and an intramolecular excimer formation to quantify PdCl2 by large fluorescence enhancement Y1 - 2010 UR - http://www.rsc.org/ej/CC/2010/b919973j.pdf SN - 1359-7345 ER - TY - JOUR A1 - Zenichowski, Karl A1 - Nacci, Ch A1 - Fölsch, S. A1 - Dokic, Jadranka A1 - Klamroth, Tillmann A1 - Saalfrank, Peter T1 - STM-switching of organic molecules on semiconductor surfaces: an above threshold density matrix model for 1,5 cyclooctadiene on Si(100) JF - Journal of physics : Condensed matter N2 - The scanning tunnelling microscope (STM)-induced switching of a single cyclooctadiene molecule between two stable conformations chemisorbed on a Si(100) surface is investigated using an above threshold model including a neutral ground state and an ionic excited state potential. Switching was recently achieved experimentally with an STM operated at cryogenic temperatures (Nacci et al 2008 Phys. Rev. B 77 121405(R)) and rationalized by a below threshold model using just a single potential energy surface (Nacci et al 2009 Nano Lett. 9 2997). In the present paper, we show that experimental key findings on the inelastic electron tunnelling (IET) switching can also be rationalized using an above threshold density matrix model, which includes, in addition to the neutral ground state potential, an anionic or cationic excited potential. We use one and two-dimensional potential energy surfaces. Furthermore, the influence of two key parameters of the density matrix description, namely the electronic lifetime of the ionic resonance and the vibrational lifetimes, on the ground state potential are discussed. Y1 - 2012 U6 - https://doi.org/10.1088/0953-8984/24/39/394009 SN - 0953-8984 VL - 24 IS - 39 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Bronner, C. A1 - Leyssner, F. A1 - Stremlau, S. A1 - Utecht, Manuel Martin A1 - Saalfrank, Peter A1 - Klamroth, Tillmann A1 - Tegeder, P. T1 - Electronic structure of a subnanometer wide bottom-up fabricated graphene nanoribbon: End states, band gap, and dispersion JF - Physical review : B, Condensed matter and materials physics N2 - Angle-resolved two-photon photoemission and high-resolution electron energy loss spectroscopy are employed to derive the electronic structure of a subnanometer atomically precise quasi-one-dimensional graphene nanoribbon (GNR) on Au(111). We resolved occupied and unoccupied electronic bands including their dispersion and determined the band gap, which possesses an unexpectedly large value of 5.1 eV. Supported by density functional theory calculations for the idealized infinite polymer and finite size oligomers, an unoccupied nondispersive electronic state with an energetic position in the middle of the band gap of the GNR could be identified. This state resides at both ends of the ribbon (end state) and is only found in the finite sized systems, i.e., the oligomers. Y1 - 2012 U6 - https://doi.org/10.1103/PhysRevB.86.085444 SN - 1098-0121 VL - 86 IS - 8 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Füchsel, Gernot A1 - Tremblay, Jean Christophe A1 - Klamroth, Tillmann A1 - Saalfrank, Peter A1 - Frischkorn, C. T1 - Concept of a single temperature for highly nonequilibrium laser-induced hydrogen desorption from a ruthenium surface JF - Physical review letters N2 - Laser-induced condensed phase reactions are often interpreted as nonequilibrium phenomena that go beyond conventional thermodynamics. Here, we show by Langevin dynamics and for the example of femtosecond-laser desorption of hydrogen from a ruthenium surface that light adsorbates thermalize rapidly due to ultrafast energy redistribution after laser excitation. Despite the complex reaction mechanism involving hot electrons in the surface region, all desorption product properties are characterized by equilibrium distributions associated with a single, unique temperature. This represents an example of ultrahot chemistry on the subpicosecond time scale. Y1 - 2012 U6 - https://doi.org/10.1103/PhysRevLett.109.098303 SN - 0031-9007 VL - 109 IS - 9 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Bronner, Christopher A1 - Utecht, Manuel Martin A1 - Haase, Anton A1 - Saalfrank, Peter A1 - Klamroth, Tillmann A1 - Tegeder, Petra T1 - Electronic structure changes during the surface-assisted formation of a graphene nanoribbon JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr N2 - High conductivity and a tunability of the band gap make quasi-one-dimensional graphene nanoribbons (GNRs) highly interesting materials for the use in field effect transistors. Especially bottom-up fabricated GNRs possess well-defined edges which is important for the electronic structure and accordingly the band gap. In this study we investigate the formation of a sub-nanometer wide armchair GNR generated on a Au(111) surface. The on-surface synthesis is thermally activated and involves an intermediate non-aromatic polymer in which the molecular precursor forms polyanthrylene chains. Employing angle-resolved two-photon photoemission in combination with density functional theory calculations we find that the polymer exhibits two dispersing states which we attribute to the valence and the conduction band, respectively. While the band gap of the non-aromatic polymer obtained in this way is relatively large, namely 5.25 +/- 0.06 eV, the gap of the corresponding aromatic GNR is strongly reduced which we attribute to the different degree of electron delocalization in the two systems. Y1 - 2014 U6 - https://doi.org/10.1063/1.4858855 SN - 0021-9606 SN - 1089-7690 VL - 140 IS - 2 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Vazhappilly, Tijo A1 - Klamroth, Tillmann A1 - Saalfrank, Peter A1 - Hernandez, Rigoberto T1 - Femtosecond-laser desorption of H-2 (D-2) from Ru(0001) : quantum and classical approaches N2 - The femtosecond-laser-induced, substrate-mediated associative desorption of molecular hydrogen and deuterium from a Ru(0001) surface in the so-called DIMET limit is studied theoretically. Two widely used models, a "quantum nonadiabatic" approach and a "classical adiabatic" one are employed and compared to each other. The quantum model is realized by the Monte Carlo wave packet (MCWP) method in the framework of open-system density matrix theory: The classical approach is realized with the help of (frictional) Langevin dynamics with stochastic forces. For both models the same ground-state potential energy surface is used and the same two-temperature model adopted to describe the hot- electron-driven desorption dynamics. Apart from these common features both models are different. Still, both account well for the main experimental findings (Wagner et al. Phys. Rev. B 2005, 72, 205404). In particular, an isotope effect in desorption probabilities, the energy content of the desorbing molecules, and the scaling of these observables with laser fluence are reproduced and explained. The similarity of the results obtained with both models is traced back to the fact that, in the present case, the photodynamics takes place dominantly in the ground electronic state because the electronically excited state is rapidly quenched. The short lifetime of the excited state has also the effect that photoreaction cross sections are typically very small. An IR+vis hybrid scheme, by which the adsorbate is vibrationally excited by IR photons prior to the heating of metal electrons with the vis pulse, is shown to successfully promote the reaction even for strongly coupled adsorbate-surface systems. Y1 - 2009 UR - http://pubs.acs.org/journal/jpccck U6 - https://doi.org/10.1021/Jp810709k SN - 1932-7447 ER - TY - JOUR A1 - Füchsel, Gernot A1 - Klamroth, Tillmann A1 - Tremblay, Jean Christophe A1 - Saalfrank, Peter T1 - Stochastic approach to laser-induced ultrafast dynamics : the desorption of H-2/D-2 from Ru(0001) N2 - The desorption of molecular hydrogen and deuterium induced by femtosecond-laser pulses is studied theoretically for the so-called DIMET (Desorption Induced by Multiple Electronic Transitions) process. These investigations are based on nonadiabatic classical Monte Carlo trajectory (CMCT) simulations on a ground and an excited state potential energy surface, including up to all six adsorbate degrees of freedom. The focus is on the hot-electron mediated energy transfer from the surface to the molecule and back, and the energy partitioning between the different degrees of freedom of the desorbing molecules. We first validate for a two-mode model comprising the desorption mode and the internal vibrational coordinate, the classical Monte Carlo trajectory method by comparing with Monte Carlo wavepacket (MCWP) calculations arising from a fully quantum mechanical open-system density matrix treatment. We then proceed by extending the CMCT calculations to include all six nuclear degrees of freedom of the desorbing molecule. This allows for a detailed comparison between theory and experiment concerning isotope effects, energy partitioning (translational, vibrational, and rotational energies and their distributions), and the dependence of these properties on the laser fluence. The most important findings are as follows. (i) CMCT agrees qualitative with the MCWP scheme. (ii) The basic experimental features such as the large isotope effect, the non-linear increase of yield with laser fluence, translationally hot products (in the order of several 1000 K) and non-equipartitioning of translational and internal energies (E-trans > E- vib > E-rot) are well reproduced. (iii) Predictions concerning a strong angular dependence of translational energies at large observation angles are also made. Y1 - 2010 UR - http://xlink.rsc.org/jumptojournal.cfm?journal_code=CP U6 - https://doi.org/10.1039/C0cp00895h SN - 1463-9076 ER - TY - JOUR A1 - Füchsel, Gernot A1 - Tremblay, Jean Christophe A1 - Klamroth, Tillmann A1 - Saalfrank, Peter T1 - Quantum dynamical simulations of the femtosecond-laser-induced ultrafast desorption of H2 and D2 from Ru(0001) JF - ChemPhysChem : a European journal of chemical physics and physical chemistry N2 - We investigate the recombinative desorption of hydrogen and deuterium from a Ru(0001) surface initiated by femtosecond laser pulses. We adopt a quantum mechanical two-state model including three molecular degrees of freedom to describe the dynamics within the desorption induced by electronic transition (DIET) limit. The energy distributions as well as the state-resolved and ensemble properties of the desorbed molecules are analyzed in detail by using the time-energy method. Our results shed light on the experimentally observed 1) large isotopic effects regarding desorption yields and translational energies and 2) the nonequal energy partitioning into internal and translational modes. In particular, it is shown that a single temperature is sufficient to characterize the energy distributions for all degrees of freedom. Further, we confirm that quantization effects play an important role in the determination of the energy partitioning. KW - quantum dynamics KW - laser chemistry KW - isotope effects KW - surface chemistry KW - ultrafast reactions Y1 - 2013 U6 - https://doi.org/10.1002/cphc.201200940 SN - 1439-4235 VL - 14 IS - 7 SP - 1471 EP - 1478 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Bedurke, Florian A1 - Klamroth, Tillmann A1 - Saalfrank, Peter T1 - Many-electron dynamics in laser-driven molecules BT - wavefunction theory vs. density functional theory JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - With recent experimental advances in laser-driven electron dynamics in polyatomic molecules, the need arises for their reliable theoretical modelling. Among efficient, yet fairly accurate methods for many-electron dynamics are Time-Dependent Configuration Interaction Singles (TD-CIS) (a Wave Function Theory (WFT) method), and Real-Time Time-Dependent Density Functional Theory (RT-TD-DFT), respectively. Here we compare TD-CIS combined with extended Atomic Orbital (AO) bases, TD-CIS/AO, with RT-TD-DFT in a grid representation of the Kohn-Sham orbitals, RT-TD-DFT/Grid. Possible ionization losses are treated by complex absorbing potentials in energy space (for TD-CIS/AO) or real space (for RT-TD-DFT), respectively. The comparison is made for two test cases: (i) state-to-state transitions using resonant lasers (pi-pulses), i.e., bound electron motion, and (ii) large-amplitude electron motion leading to High Harmonic Generation (HHG). Test systems are a H-2 molecule and cis- and trans-1,2-dichlorethene, C2H2Cl2, (DCE). From time-dependent electronic energies, dipole moments and from HHG spectra, the following observations are made: first, for bound state-to-state transitions enforced by pi-pulses, TD-CIS nicely accounts for the expected population inversion in contrast to RT-TD-DFT, in agreement with earlier findings. Secondly, when using laser pulses under non-resonant conditions, dipole moments and lower harmonics in HHG spectra are obtained by TD-CIS/AO which are in good agreement with those obtained with RT-TD-DFT/Grid. Deviations become larger for higher harmonics and at low laser intensities, i.e., for low-intensity HHG signals. We also carefully test effects of basis sets for TD-CIS/AO and grid size for RT-TD-DFT/Grid, different exchange-correlation functionals in RT-TD-DFT, and absorbing boundaries. Finally, for the present examples, TD-CIS/AO is observed to be at least an order of magnitude more computationally efficient than RT-TD-DFT/Grid. Y1 - 2021 U6 - https://doi.org/10.1039/d1cp01100f SN - 1463-9076 SN - 1463-9084 VL - 23 IS - 24 SP - 13544 EP - 13560 PB - Royal Society of Chemistry CY - Cambridge ER - TY - CHAP A1 - Saalfrank, Peter A1 - Bedurke, Florian A1 - Heide, Chiara A1 - Klamroth, Tillmann A1 - Klinkusch, Stefan A1 - Krause, Pascal A1 - Nest, Mathias A1 - Tremblay, Jean Christophe ED - Ruud, Kenneth ED - Brändas, Erkki J. T1 - Molecular attochemistry: correlated electron dynamics driven by light T2 - Advances in quantum chemistry N2 - Modern laser technology and ultrafast spectroscopies have pushed the timescales for detecting and manipulating dynamical processes in molecules from the picosecond over femtosecond domains, to the attosecond regime (1 as = 10(-18) s). This way, real-time dynamics of electrons after their photoexcitation can be probed and manipulated. In particular, experiments are moving more and more from atomic and solid state systems to molecules, opening the fields of "molecular electron dynamics" and "attosecond chemistry." Also on the theory side, powerful quantum dynamical tools have been developed to rationalize experiments on ultrafast electron dynamics in molecular species.
In this contribution, we concentrate on theoretical aspects of ultrafast electron dynamics in molecules, mostly driven by lasers. The dynamics will be described with the help of wavefunction-based ab initio methods such as time-dependent configuration interaction (TD-CI) or the multiconfigurational time-dependent Hartree-Fock (MCTDHF) methods. Besides a survey of the methods and their extensions toward, e.g., treatment of ionization, laser pulse optimization, and open quantum systems, two specific examples of applications will be considered: The creation and/or dynamical fate of electronic wavepackets, and the nonlinear optical response to laser pulse excitation in molecules by high harmonic generation (HHG). KW - dipole approximation KW - electron dynamics KW - electronic wavepackets KW - high harmonic generation KW - ionization KW - optimal control theory KW - time-dependent Schrödinger equation Y1 - 2020 SN - 978-0-12-819757-8 U6 - https://doi.org/10.1016/bs.aiq.2020.03.001 SN - 0065-3276 VL - 81 SP - 15 EP - 50 PB - Elsevier CY - Amsterdam [u.a.] ER - TY - JOUR A1 - Klamroth, Tillmann A1 - Kroner, Dominic A1 - Saalfrank, Peter T1 - Laser-driven coupled electron-nuclear dynamics : Quantum mechanical simulation of molecular photodesorption from metal films N2 - In this paper we report dynamical simulations of laser-driven, coupled nuclear-electron dynamics for a molecule- surface system. Specifically, the laser desorption of a small molecule (NO) from a metal slab (Pt) in the so-called DIET limit (Desorption Induced by Electronic Transitions), is studied. The excitation of the metal electrons by a laser pulse followed by the formation of a negative ion resonance, its subsequent decay, and the simultaneous desorption of the molecule are all treated within a single quantum mechanical model. This model is based on an earlier theory of Harris and others [S. M. Harris, S. Holloway, and G. R. Darling, J. Chem. Phys. 102, 8235 (1995)], according to which a nuclear degree of freedom is coupled to an electronic one, both propagated on a single non-Born-Oppenheimer potential energy surface. The goals of the present contribution are (i) to make a conceptual connection of this model to the frequently adopted nonadiabatic "multi-state" models of photodesorption, (ii) to understand details of the desorption mechanism, (iii) to explicitly account for the laser pulse, and (iv) to study the photodesorption as a function of the thickness of the metal film, and the laser parameters. As an important methodological aspect we also present a highly efficient numerical scheme to propagate the wave packet in a problem-adapted diabatic basis Y1 - 2005 SN - 1098-0121 ER - TY - JOUR A1 - Saalfrank, Peter A1 - Nest, Mathias A1 - Andrianov, Igor V. A1 - Klamroth, Tillmann A1 - Kroner, Dominic A1 - Beyvers, Stephanie T1 - Quantum dynamics of laser-induced desorption from metal and semiconductor surfaces, and related phenomena N2 - Recent progress towards a quantum theory of laser-induced desorption and related phenomena is reviewed, for specific examples. These comprise the photodesorption of NO from Pt(111), the scanning tunnelling microscope and laser- induced desorption and switching of H at Si(100), and the electron stimulated desorption and dissociation of CO at Ru(0001). The theoretical methods used for nuclear dynamics range from open-system density matrix theory over nonadiabatically coupled multi-state models to electron-nuclear wavepackets. Also, aspects of time-dependent spectroscopy to probe ultrafast nonadiabatic processes at surfaces will be considered for the example of two-photon photoemission of solvated electrons in ice layers on Cu(111) Y1 - 2006 UR - http://iopscience.iop.org/0953-8984/18/30/S05/pdf/0953-8984_18_30_S05.pdf U6 - https://doi.org/10.1088/0953-8984/18/30/S05 SN - 1361-648X SN - 0953-8984 VL - 18 IS - 30 SP - S1425 EP - S1459 PB - IOP Publ. CY - Bristol ER -