TY - JOUR A1 - Utecht, Manuel Martin A1 - Klamroth, Tillmann T1 - Local resonances in STM manipulation of chlorobenzene on Si(111)-7x7 BT - performance of different cluster models and density functionals JF - Molecular physics N2 - Hot localised charge carriers on the Si(111)-7x7 surface are modelled by small charged clusters. Such resonances induce non-local desorption, i.e. more than 10 nm away from the injection site, of chlorobenzene in scanning tunnelling microscope experiments. We used such a cluster model to characterise resonance localisation and vibrational activation for positive and negative resonances recently. In this work, we investigate to which extent the model depends on details of the used cluster or quantum chemistry methods and try to identify the smallest possible cluster suitable for a description of the neutral surface and the ion resonances. Furthermore, a detailed analysis for different chemisorption orientations is performed. While some properties, as estimates of the resonance energy or absolute values for atomic changes, show such a dependency, the main findings are very robust with respect to changes in the model and/or the chemisorption geometry. [GRAPHICS] . KW - DFT KW - cluster model KW - charge localisation KW - STM Y1 - 2018 U6 - https://doi.org/10.1080/00268976.2018.1442939 SN - 0026-8976 SN - 1362-3028 VL - 116 IS - 13 SP - 1687 EP - 1696 PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - GEN A1 - Utecht, Manuel Martin A1 - Klamroth, Tillmann T1 - Local resonances in STM manipulation of chlorobenzene on Si(111)-7×7 BT - performance of different cluster models and density functionals T2 - Molecular Physics N2 - Hot localised charge carriers on the Si(111)-7×7 surface are modelled by small charged clusters. Such resonances induce non-local desorption, i.e. more than 10 nm away from the injection site, of chlorobenzene in scanning tunnelling microscope experiments. We used such a cluster model to characterise resonance localisation and vibrational activation for positive and negative resonances recently. In this work, we investigate to which extent the model depends on details of the used cluster or quantum chemistry methods and try to identify the smallest possible cluster suitable for a description of the neutral surface and the ion resonances. Furthermore, a detailed analysis for different chemisorption orientations is performed. While some properties, as estimates of the resonance energy or absolute values for atomic changes, show such a dependency, the main findings are very robust with respect to changes in the model and/or the chemisorption geometry. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 463 KW - DFT KW - cluster model KW - charge localisation KW - STM Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-412970 ER -