TY - GEN A1 - Kienel, Ulrike A1 - Wulf Bowen, Sabine A1 - Byrne, Roger A1 - Park, Jungjae A1 - Böhnel, Harald A1 - Dulski, Peter A1 - Luhr, James F. A1 - Siebert, Lee A1 - Haug, Gerald H. A1 - Negendank, Jörg F. W. T1 - First lacustrine varve chronologies from Mexico BT - impact of droughts, ENSO and human activity since AD 1840 as recorded in maar sediments from Valle de Santiago T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - We present varve chronologies for sediments from two maar lakes in the Valle de Santiago region (Central Mexico): Hoya La Alberca (AD 1852-1973) and Hoya Rincn de Parangueo (AD 1839-1943). These are the first varve chronologies for Mexican lakes. The varved sections were anchored with tephras from Colima (1913) and Paricutin (1943/1944) and (210)Pb ages. We compare the sequences using the thickness of seasonal laminae and element counts (Al, Si, S, Cl, K, Ti, Mn, Fe, and Sr) determined by micro X-ray fluorescence spectrometry. The formation of the varve sublaminae is attributed to the strongly seasonal climate regime. Limited rainfall and high evaporation rates in winter and spring induce precipitation of carbonates (high Ca, Sr) enriched in (13)C and (18)O, whereas rainfall in summer increases organic and clastic input (plagioclase, quartz) with high counts of lithogenic elements (K, Al, Ti, and Si). Eolian input of Ti occurs also in the dry season. Moving correlations (5-yr windows) of the Ca and Ti counts show similar development in both sequences until the 1930s. Positive correlations indicate mixing of allochthonous Ti and autochthonous Ca, while negative correlations indicate their separation in sublaminae. Negative excursions in the correlations correspond with historic and reconstructed droughts, El Nio events, and positive SST anomalies. Based on our data, droughts (3-7 year duration) were severe and centred around the following years: the early 1850s, 1865, 1880, 1895, 1905, 1915 and the late 1920s with continuation into the 1930s. The latter dry period brought both lake systems into a critical state making them susceptible to further drying. Groundwater overexploitation due to the expansion of irrigation agriculture in the region after 1940 induced the transition from calcite to aragonite precipitation in Alberca and halite infiltration in Rincn. The proxy data indicate a faster response to increased evaporation for Rincn, the lake with the larger maar dimensions, solar radiation receipt and higher conductivity, whereas the smaller, steeper Alberca maar responded rapidly to increased precipitation. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 860 KW - varve chronology KW - tephra KW - element chemistry KW - drought KW - human impact KW - El Nino KW - Mexico Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-432794 SN - 1866-8372 IS - 860 SP - 587 EP - 609 ER - TY - JOUR A1 - Kienel, Ulrike A1 - Bowen, Sabine Wulf A1 - Byrne, Roger A1 - Park, Jungjae A1 - Boehnel, Harald A1 - Dulski, Peter A1 - Luhr, James F. A1 - Siebert, Lee A1 - Haug, Gerald H. A1 - Negendank, Joerg F. W. T1 - First lacustrine varve chronologies from Mexico : impact of droughts, ENSO and human activity since AD 1840 as recorded in maar sediments from Valle de Santiago N2 - We present varve chronologies for sediments from two maar lakes in the Valle de Santiago region (Central Mexico): Hoya La Alberca (AD 1852-1973) and Hoya Rincn de Parangueo (AD 1839-1943). These are the first varve chronologies for Mexican lakes. The varved sections were anchored with tephras from Colima (1913) and Paricutin (1943/ 1944) and Pb-210 ages. We compare the sequences using the thickness of seasonal laminae and element counts (Al, Si, S, Cl, K, Ti, Mn, Fe, and Sr) determined by micro X-ray fluorescence spectrometry. The formation of the varve sublaminae is attributed to the strongly seasonal climate regime. Limited rainfall and high evaporation rates in winter and spring induce precipitation of carbonates (high Ca, Sr) enriched in C-13 and O-18, whereas rainfall in summer increases organic and clastic input (plagioclase, quartz) with high counts of lithogenic elements (K, Al, Ti, and Si). Eolian input of Ti occurs also in the dry season. Moving correlations (5-yr windows) of the Ca and Ti counts show similar development in both sequences until the 1930s. Positive correlations indicate mixing of allochthonous Ti and autochthonous Ca, while negative correlations indicate their separation in sublaminae. Negative excursions in the correlations correspond with historic and reconstructed droughts, El Nio events, and positive SST anomalies. Based on our data, droughts (3-7 year duration) were severe and centred around the following years: the early 1850s, 1865, 1880, 1895, 1905, 1915 and the late 1920s with continuation into the 1930s. The latter dry period brought both lake systems into a critical state making them susceptible to further drying. Groundwater overexploitation due to the expansion of irrigation agriculture in the region after 1940 induced the transition from calcite to aragonite precipitation in Alberca and halite infiltration in Rincn. The proxy data indicate a faster response to increased evaporation for Rincn, the lake with the larger maar dimensions, solar radiation receipt and higher conductivity, whereas the smaller, steeper Alberca maar responded rapidly to increased precipitation. Y1 - 2009 UR - http://www.springerlink.com/content/100294 U6 - https://doi.org/10.1007/s10933-009-9307-x SN - 0921-2728 ER - TY - JOUR A1 - Prasad, Sushama A1 - Witt, Annette A1 - Kienel, Ulrike A1 - Dulski, Peter A1 - Bauer, Eva A1 - Yancheva, Gergana T1 - The 8.2 ka event : evidence for seasonal differences and the rate of climate change in western Europe N2 - Recent studies have drawn attention to differences in the seasonal impact of the 8.2 ka event, with longer cooler summers and shorter cooler/drier winters. However, there are no data available on the simultaneity or the rate of onset of the seasonal changes in Europe. Based on the microfacies and geochemical analyses of seasonally laminated varved sediments from Holzmaar, we present evidence of differences in duration and onset time of changes in summer temperature and winter rainfall during the 8.2 ka event. Since both summer and winter climate signals are co-registered within a single varve, there can be no ambiguity about the phasing and duration of the signals. Our data show that the onset and withdrawal of the 8.2 ka summer cooling occurred within a year, and that summer rains were reduced or absent during the investigated period. The onset of cooler summers preceded the onset of winter dryness by ca. 28 years. In view of the differences in nature and duration of the impact of the 8.2 ka event we suggest that a clearer definition of the 8.2 ka event (summer cooling or winter cooling/dryness) needs to be developed. Based on regional comparison and available modelling studies we also discuss the roles of solar variability, changes in North Atlantic Thermohaline circulation, and North Atlantic Circulation (NAO) during the period under consideration. Wavelet analyses of seasonal laminae indicates that the longer NAO cycles, linked to changes in the N. Atlantic temperatures, were more frequent during the drier periods. Y1 - 2009 UR - http://www.sciencedirect.com/science/journal/09218181 U6 - https://doi.org/10.1016/j.gloplacha.2009.03.011 SN - 0921-8181 ER -