TY - JOUR A1 - Imholt, Christian A1 - Reil, Daniela A1 - Eccard, Jana A1 - Jacob, Daniela A1 - Hempelmann, Nils A1 - Jacob, Jens T1 - Quantifying the past and future impact of climate on outbreak patterns of bank voles (Myodes glareolus) JF - Pest management science N2 - BACKGROUND Central European outbreak populations of the bank vole (Myodes glareolus Schreber) are known to cause damage in forestry and to transmit the most common type of Hantavirus (Puumala virus, PUUV) to humans. A sound estimation of potential effects of future climate scenarios on population dynamics is a prerequisite for long-term management strategies. Historic abundance time series were used to identify the key weather conditions associated with bank vole abundance, and were extrapolated to future climate scenarios to derive potential long-term changes in bank vole abundance dynamics. RESULTS Classification and regression tree analysis revealed the most relevant weather parameters associated with high and low bank vole abundances. Summer temperatures 2 years prior to trapping had the highest impact on abundance fluctuation. Extrapolation of the identified parameters to future climate conditions revealed an increase in years with high vole abundance. CONCLUSION Key weather patterns associated with vole abundance reflect the importance of superabundant food supply through masting to the occurrence of bank vole outbreaks. Owing to changing climate, these outbreaks are predicted potentially to increase in frequency 3-4-fold by the end of this century. This may negatively affect damage patterns in forestry and the risk of human PUUV infection in the long term. (c) 2014 Society of Chemical Industry KW - climate change KW - population dynamics KW - bank vole KW - regression tree KW - outbreak Y1 - 2015 U6 - https://doi.org/10.1002/ps.3838 SN - 1526-498X SN - 1526-4998 VL - 71 IS - 2 SP - 166 EP - 172 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Reil, Daniela A1 - Imholt, Christian A1 - Drewes, Stephan A1 - Ulrich, Rainer Günter A1 - Eccard, Jana A1 - Jacob, Jens T1 - Environmental conditions in favour of a hantavirus outbreak in 2015 in Germany? JF - Zoonoses and Public Health N2 - Bank voles can harbour Puumala virus (PUUV) and vole populations usually peak in years after beech mast. A beech mast occurred in 2014 and a predictive model indicates high vole abundance in 2015. This pattern is similar to the years 2009/2011 when beech mast occurred, bank voles multiplied and human PUUV infections increased a year later. Given similar environmental conditions in 2014/2015, increased risk of human PUUV infections in 2015 is likely. Risk management measures are recommended. KW - Beech fructification KW - Puumala virus KW - bank vole KW - outbreak KW - nephropathia epidemica KW - Germany Y1 - 2016 U6 - https://doi.org/10.1111/zph.12217 SN - 1863-1959 SN - 1863-2378 VL - 63 SP - 83 EP - 88 PB - Wiley-Blackwell CY - Hoboken ER - TY - GEN A1 - Reil, Daniela A1 - Imholt, Christian A1 - Eccard, Jana A1 - Jacob, Jens T1 - Beech fructification and bank vole population dynamics BT - combined analyses of promoters of Human Puumala virus infections in Germany T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The transmission of wildlife zoonoses to humans depends, amongst others, on complex interactions of host population ecology and pathogen dynamics within host populations. In Europe, the Puumala virus (PUUV) causes nephropathia epidemica in humans. In this study we investigated complex interrelations within the epidemic system of PUUV and its rodent host, the bank vole (Myodes glareolus). We suggest that beech fructification and bank vole abundance are both decisive factors affecting human PUUV infections. While rodent host dynamics are expected to be directly linked to human PUUV infections, beech fructification is a rather indirect predictor by serving as food source for PUUV rodent hosts. Furthermore, we examined the dependence of bank vole abundance on beech fructification. We analysed a 12-year (2001-2012) time series of the parameters: beech fructification (as food resource for the PUUV host), bank vole abundance and human incidences from 7 Federal States of Germany. For the first time, we could show the direct interrelation between these three parameters involved in human PUUV epidemics and we were able to demonstrate on a large scale that human PUUV infections are highly correlated with bank vole abundance in the present year, as well as beech fructification in the previous year. By using beech fructification and bank vole abundance as predictors in one model we significantly improved the degree of explanation of human PUUV incidence. Federal State was included as random factor because human PUUV incidence varies considerably among states. Surprisingly, the effect of rodent abundance on human PUUV infections is less strong compared to the indirect effect of beech fructification. Our findings are useful to facilitate the development of predictive models for host population dynamics and the related PUUV infection risk for humans and can be used for plant protection and human health protection purposes. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 484 KW - Fagus-Sylvatica L KW - Hantavirus infection KW - Nephrorathia-Epidemica KW - Rodent populations KW - Lyme-disease KW - risk-factors KW - Clethrionomys-Glareolus KW - temporal dynamics KW - renal-failure Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-408064 SN - 1866-8372 IS - 484 ER - TY - JOUR A1 - Reil, Daniela A1 - Imholt, Christian A1 - Eccard, Jana A1 - Jacob, Jens T1 - Beech Fructification and Bank Vole Population Dynamics - Combined Analyses of Promoters of Human Puumala Virus Infections in Germany JF - PLoS one N2 - The transmission of wildlife zoonoses to humans depends, amongst others, on complex interactions of host population ecology and pathogen dynamics within host populations. In Europe, the Puumala virus (PUUV) causes nephropathia epidemica in humans. In this study we investigated complex interrelations within the epidemic system of PUUV and its rodent host, the bank vole (Myodes glareolus). We suggest that beech fructification and bank vole abundance are both decisive factors affecting human PUUV infections. While rodent host dynamics are expected to be directly linked to human PUUV infections, beech fructification is a rather indirect predictor by serving as food source for PUUV rodent hosts. Furthermore, we examined the dependence of bank vole abundance on beech fructification. We analysed a 12-year (2001-2012) time series of the parameters: beech fructification (as food resource for the PUUV host), bank vole abundance and human incidences from 7 Federal States of Germany. For the first time, we could show the direct interrelation between these three parameters involved in human PUUV epidemics and we were able to demonstrate on a large scale that human PUUV infections are highly correlated with bank vole abundance in the present year, as well as beech fructification in the previous year. By using beech fructification and bank vole abundance as predictors in one model we significantly improved the degree of explanation of human PUUV incidence. Federal State was included as random factor because human PUUV incidence varies considerably among states. Surprisingly, the effect of rodent abundance on human PUUV infections is less strong compared to the indirect effect of beech fructification. Our findings are useful to facilitate the development of predictive models for host population dynamics and the related PUUV infection risk for humans and can be used for plant protection and human health protection purposes. Y1 - 2015 U6 - https://doi.org/10.1371/journal.pone.0134124 SN - 1932-6203 VL - 10 IS - 7 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Mazza, Valeria A1 - Dammhahn, Melanie A1 - Eccard, Jana A1 - Palme, Rupert A1 - Zaccaroni, Marco A1 - Jacob, Jens T1 - Coping with style: individual differences in responses to environmental variation JF - Behavioral ecology and sociobiology N2 - Between-individual differences in coping with stress encompass neurophysiological, cognitive and behavioural reactions. The coping style model proposes two alternative response patterns to challenges that integrate these types of reactions. The “proactive strategy” combines a general fight-or-flight response and inflexibility in learning with a relatively low HPA (hypothalamic–pituitary–adrenal) response. The “reactive strategy” includes risk aversion, flexibility in learning and an enhanced HPA response. Although numerous studies have investigated the possible covariance of cognitive, behavioural and physiological responses, findings are still mixed. In the present study, we tested the predictions of the coping style model in an unselected population of bank voles (Myodes glareolus) (N = 70). We measured the voles’ boldness, activity, speed and flexibility in learning and faecal corticosterone metabolite levels under three conditions (holding in indoor cages, in outdoor enclosures and during open field test). Individuals were moderately consistent in their HPA response across situations. Proactive voles had significantly lower corticosterone levels than reactive conspecifics in indoor and outdoor conditions. However, we could not find any co-variation between cognitive and behavioural traits and corticosterone levels in the open field test. Our results partially support the original coping style model but suggest a more complex relationship between cognitive, behavioural and endocrine responses than was initially proposed. KW - Coping styles KW - Faecal glucocorticoid metabolites KW - Learning KW - Stress KW - Personality KW - Rodent Y1 - 2019 U6 - https://doi.org/10.1007/s00265-019-2760-2 SN - 0340-5443 SN - 1432-0762 VL - 73 IS - 10 PB - Springer CY - New York ER - TY - JOUR A1 - Mazza, Valeria A1 - Eccard, Jana A1 - Zaccaroni, Marco A1 - Jacob, Jens A1 - Dammhahn, Melanie T1 - The fast and the flexible BT - cognitive style drives individual variation in cognition in a small mammal JF - Animal behaviour KW - animal personality KW - associative learning KW - behavioural syndrome KW - fast and slow learner KW - individual differences KW - Myodes glareolus KW - rodent KW - speed-accuracy trade-off KW - temperament Y1 - 2018 U6 - https://doi.org/10.1016/j.anbehav.2018.01.011 SN - 0003-3472 SN - 1095-8282 VL - 137 SP - 119 EP - 132 PB - Elsevier CY - London ER - TY - GEN A1 - Reil, Daniela A1 - Rosenfeld, Ulrike M. A1 - Imholt, Christian A1 - Schmidt, Sabrina A1 - Ulrich, Rainer G. A1 - Eccard, Jana A1 - Jacob, Jens T1 - Puumala hantavirus infections in bank vole populations BT - host and virus dynamics in Central Europe T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Background In Europe, bank voles (Myodes glareolus) are widely distributed and can transmit Puumala virus (PUUV) to humans, which causes a mild to moderate form of haemorrhagic fever with renal syndrome, called nephropathia epidemica. Uncovering the link between host and virus dynamics can help to prevent human PUUV infections in the future. Bank voles were live trapped three times a year in 2010–2013 in three woodland plots in each of four regions in Germany. Bank vole population density was estimated and blood samples collected to detect PUUV specific antibodies. Results We demonstrated that fluctuation of PUUV seroprevalence is dependent not only on multi-annual but also on seasonal dynamics of rodent host abundance. Moreover, PUUV infection might affect host fitness, because seropositive individuals survived better from spring to summer than uninfected bank voles. Individual space use was independent of PUUV infections. Conclusions Our study provides robust estimations of relevant patterns and processes of the dynamics of PUUV and its rodent host in Central Europe, which are highly important for the future development of predictive models for human hantavirus infection risk. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 957 KW - Myodes glareolus KW - population dynamics KW - Puumala virus seroprevalence KW - space use KW - survival Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-431232 SN - 1866-8372 IS - 957 ER - TY - GEN A1 - Mazza, Valeria A1 - Jacob, Jens A1 - Dammhahn, Melanie A1 - Zaccaroni, Marco A1 - Eccard, Jana T1 - Individual variation in cognitive style reflects foraging and antipredator strategies in a small mammal T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Balancing foraging gain and predation risk is a fundamental trade-off in the life of animals. Individual strategies to acquire, process, store and use information to solve cognitive tasks are likely to affect speed and flexibility of learning, and ecologically relevant decisions regarding foraging and predation risk. Theory suggests a functional link between individual variation in cognitive style and behaviour (animal personality) via speed-accuracy and risk-reward trade-offs. We tested whether cognitive style and personality affect risk-reward trade-off decisions posed by foraging and predation risk. We exposed 21 bank voles (Myodes glareolus) that were bold, fast learning and inflexible and 18 voles that were shy, slow learning and flexible to outdoor enclosures with different risk levels at two food patches. We quantified individual food patch exploitation, foraging and vigilance behaviour. Although both types responded to risk, fast animals increasingly exploited both food patches, gaining access to more food and spending less time searching and exercising vigilance. Slow animals progressively avoided high-risk areas, concentrating foraging effort in the low-risk one, and devoting >50% of visit to vigilance. These patterns indicate that individual differences in cognitive style/personality are reflected in foraging and anti-predator decisions that underlie the individual risk-reward bias. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 761 KW - voles clethrionomys-glareolus KW - coping styles KW - bank voles KW - behavioral flexibility KW - trade-offs KW - exploratory-behavior KW - mustelid predation KW - social information KW - animal personality KW - stress Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-437118 SN - 1866-8372 IS - 761 ER - TY - JOUR A1 - Mazza, Valeria A1 - Jacob, Jens A1 - Dammhahn, Melanie A1 - Zaccaroni, Marco A1 - Eccard, Jana T1 - Individual variation in cognitive style reflects foraging and antipredator strategies in a small mammal JF - Scientific Reports N2 - Balancing foraging gain and predation risk is a fundamental trade-off in the life of animals. Individual strategies to acquire, process, store and use information to solve cognitive tasks are likely to affect speed and flexibility of learning, and ecologically relevant decisions regarding foraging and predation risk. Theory suggests a functional link between individual variation in cognitive style and behaviour (animal personality) via speed-accuracy and risk-reward trade-offs. We tested whether cognitive style and personality affect risk-reward trade-off decisions posed by foraging and predation risk. We exposed 21 bank voles (Myodes glareolus) that were bold, fast learning and inflexible and 18 voles that were shy, slow learning and flexible to outdoor enclosures with different risk levels at two food patches. We quantified individual food patch exploitation, foraging and vigilance behaviour. Although both types responded to risk, fast animals increasingly exploited both food patches, gaining access to more food and spending less time searching and exercising vigilance. Slow animals progressively avoided high-risk areas, concentrating foraging effort in the low-risk one, and devoting >50% of visit to vigilance. These patterns indicate that individual differences in cognitive style/personality are reflected in foraging and anti-predator decisions that underlie the individual risk-reward bias. KW - animal personality KW - bank voles KW - behavioral flexibility KW - coping styles KW - exploratory-behavior KW - mustelid predation KW - social information KW - stress KW - trade-offs KW - voles clethrionomys-glareolus Y1 - 2019 U6 - https://doi.org/10.1038/s41598-019-46582-1 SN - 2045-2322 VL - 9 PB - Macmillan Publishers Limited, part of Springer Nature CY - London ER - TY - JOUR A1 - Schmidt, Sabrina A1 - Saxenhofer, Moritz A1 - Drewes, Stephan A1 - Schlegel, Mathias A1 - Wanka, Konrad M. A1 - Frank, Raphael A1 - Klimpel, Sven A1 - von Blanckenhagen, Felix A1 - Maaz, Denny A1 - Herden, Christiane A1 - Freise, Jona A1 - Wolf, Ronny A1 - Stubbe, Michael A1 - Borkenhagen, Peter A1 - Ansorge, Hermann A1 - Eccard, Jana A1 - Lang, Johannes A1 - Jourdain, Elsa A1 - Jacob, Jens A1 - Marianneau, Philippe A1 - Heckel, Gerald A1 - Ulrich, Rainer Günter T1 - High genetic structuring of Tula hantavirus JF - Archives of virology N2 - Tula virus (TULV) is a vole-associated hantavirus with low or no pathogenicity to humans. In the present study, 686 common voles (Microtus arvalis), 249 field voles (Microtus agrestis) and 30 water voles (Arvicola spec.) were collected at 79 sites in Germany, Luxembourg and France and screened by RT-PCR and TULV-IgG ELISA. TULV-specific RNA and/or antibodies were detected at 43 of the sites, demonstrating a geographically widespread distribution of the virus in the studied area. The TULV prevalence in common voles (16.7 %) was higher than that in field voles (9.2 %) and water voles (10.0 %). Time series data at ten trapping sites showed evidence of a lasting presence of TULV RNA within common vole populations for up to 34 months, although usually at low prevalence. Phylogenetic analysis demonstrated a strong genetic structuring of TULV sequences according to geography and independent of the rodent species, confirming the common vole as the preferential host, with spillover infections to co-occurring field and water voles. TULV phylogenetic clades showed a general association with evolutionary lineages in the common vole as assessed by mitochondrial DNA sequences on a large geographical scale, but with local-scale discrepancies in the contact areas. Y1 - 2016 U6 - https://doi.org/10.1007/s00705-016-2762-6 SN - 0304-8608 SN - 1432-8798 VL - 161 SP - 1135 EP - 1149 PB - Springer CY - Wien ER -