TY - JOUR A1 - Ibarra, Federico A1 - Liu, Sibiao A1 - Meeßen, Christian A1 - Prezzi, Claudia Beatriz A1 - Bott, Judith A1 - Scheck-Wenderoth, Magdalena A1 - Sobolev, Stephan Vladimir A1 - Strecker, Manfred T1 - 3D data-derived lithospheric structure of the Central Andes and its implications for deformation: Insights from gravity and geodynamic modelling JF - Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth N2 - We present a new three-dimensional density model of the Central Andes characterizing the structure and composition of the lithosphere together with a geodynamic simulation subjected to continental intraplate shortening. The principal aim of this study is to assess the link between heterogeneities in the lithosphere and different deformation patterns and styles along the orogen-foreland system of the Central Andes. First, we performed a 3D integration of new geological and geophysical data with previous models through forward modelling of Bouguer anomalies. Subsequently, a geodynamic model was set-up and parametrized from the previously obtained 3D structure and composition. We do not find a unambigous correlation between the resulting density configuration and terrane boundaries proposed by other authors. Our models reproduce the observed Bouguer anomaly and deformation patterns in the foreland. We find that thin-skinned deformation in the Subandean fold-and thrust belt is controlled by a thick sedimentary layer and coeval underthrusting of thin crust of the foreland beneath the thick crust of the Andean Plateau. In the adjacent thick-skinned deformation province of the inverted Cretaceous extensional Santa Barbara System sedimentary strata are much thinner and crustal thickness transitions from greater values in the Andean to a more reduced thickness in the foreland. Our results show that deformation processes occur where the highest gradients of lithospheric strength are present between the orogen and the foreland, thus suggesting a spatial correlation between deformation and lithospheric strength. KW - Central Andes KW - Lithospheric structure KW - Gravity modelling KW - Geodynamic modelling KW - Deformation Y1 - 2019 U6 - https://doi.org/10.1016/j.tecto.2019.06.025 SN - 0040-1951 SN - 1879-3266 VL - 766 SP - 453 EP - 468 PB - Elsevier CY - Amsterdam ER - TY - THES A1 - Ibarra, Federico T1 - The thermal and rheological state of the Central Andes and its relationship to active deformation processes T1 - Der thermische und rheologische Zustand der Zentralanden und seine Beziehung zu aktiven Deformationsprozessen N2 - The Central Andes region in South America is characterized by a complex and heterogeneous deformation system. Recorded seismic activity and mapped neotectonic structures indicate that most of the intraplate deformation is located along the margins of the orogen, in the transitions to the foreland and the forearc. Furthermore, the actively deforming provinces of the foreland exhibit distinct deformation styles that vary along strike, as well as characteristic distributions of seismicity with depth. The style of deformation transitions from thin-skinned in the north to thick-skinned in the south, and the thickness of the seismogenic layer increases to the south. Based on geological/geophysical observations and numerical modelling, the most commonly invoked causes for the observed heterogeneity are the variations in sediment thickness and composition, the presence of inherited structures, and changes in the dip of the subducting Nazca plate. However, there are still no comprehensive investigations on the relationship between the lithospheric composition of the Central Andes, its rheological state and the observed deformation processes. The central aim of this dissertation is therefore to explore the link between the nature of the lithosphere in the region and the location of active deformation. The study of the lithospheric composition by means of independent-data integration establishes a strong base to assess the thermal and rheological state of the Central Andes and its adjacent lowlands, which alternatively provide new foundations to understand the complex deformation of the region. In this line, the general workflow of the dissertation consists in the construction of a 3D data-derived and gravity-constrained density model of the Central Andean lithosphere, followed by the simulation of the steady-state conductive thermal field and the calculation of strength distribution. Additionally, the dynamic response of the orogen-foreland system to intraplate compression is evaluated by means of 3D geodynamic modelling. The results of the modelling approach suggest that the inherited heterogeneous composition of the lithosphere controls the present-day thermal and rheological state of the Central Andes, which in turn influence the location and depth of active deformation processes. Most of the seismic activity and neo--tectonic structures are spatially correlated to regions of modelled high strength gradients, in the transition from the felsic, hot and weak orogenic lithosphere to the more mafic, cooler and stronger lithosphere beneath the forearc and the foreland. Moreover, the results of the dynamic simulation show a strong localization of deviatoric strain rate second invariants in the same region suggesting that shortening is accommodated at the transition zones between weak and strong domains. The vertical distribution of seismic activity appears to be influenced by the rheological state of the lithosphere as well. The depth at which the frequency distribution of hypocenters starts to decrease in the different morphotectonic units correlates with the position of the modelled brittle-ductile transitions; accordingly, a fraction of the seismic activity is located within the ductile part of the crust. An exhaustive analysis shows that practically all the seismicity in the region is restricted above the 600°C isotherm, in coincidence with the upper temperature limit for brittle behavior of olivine. Therefore, the occurrence of earthquakes below the modelled brittle-ductile could be explained by the presence of strong residual mafic rocks from past tectonic events. Another potential cause of deep earthquakes is the existence of inherited shear zones in which brittle behavior is favored through a decrease in the friction coefficient. This hypothesis is particularly suitable for the broken foreland provinces of the Santa Barbara System and the Pampean Ranges, where geological studies indicate successive reactivation of structures through time. Particularly in the Santa Barbara System, the results indicate that both mafic rocks and a reduction in friction are required to account for the observed deep seismic events. N2 - Die südamerikanischen Zentralanden zeichnen sich durch eine komplexe und heterogene Deformationsstruktur aus. Erdbebenaufzeichnungen und geologisch-tektonische Kartierungen zeigen, dass innerhalb der Südamerikanischen Platte die Hauptdeformation entlang beider Gebirgsränder stattfindet. Zusätzlich variiert die Art der aktiven Deformation und die Tiefenverteilung von Erdbeben im östlichen Vorland von Nord nach Süd. Dabei erstreckt sich das Auftreten von Erdbeben, auch seismogene Zone genannt, über einen zunehmend größeren Tiefenbereich. Die tektonische Deformation schließt ebenso, nach Süden hin zunehmend, größere Tiefenbereiche der Erdkruste mit ein. Erklärungen dieses Verhaltens auf der Grundlage von geologisch-geophysikalischen Untersuchungen sowie von numerischen Modellen legten bisher nahe, dass die Unterschiede der Sedimentmächtigkeiten, das Vorhandensein ererbter tektonischer Strukturen und die Variation des Eintauchwinkels der unter Südamerika abtauschenden Nazca-platte als Gründe dafür in Frage kommen. Allerdings gab es bislang keine Untersuchungen dazu, welche Rolle die lokale Zusammensetzung der Lithosphäre sowie ihr Fließverhalten dabei spielen. Das Hauptziel dieser Dissertation ist daher, den Zusammenhang zwischen Lithosphäreneigenschaften in der Region und dem Auftreten gewisser Deformationstypen an der Erdoberfläche zu untersuchen. Die Zuhilfenahme voneinander unabhängiger, geophysikalischer Beobachtungsparameter ermöglicht eine Beurteilung des thermischen und rheologischen Zustands der Zentralanden und angrenzender Vorlandgebiete, und damit eine bessere Einschätzung der komplexen Deformation. Der Workflow dieser Dissertation startet zunächst mit der Erstellung eines 3D-Dichtemodells auf der Grundlage von geologischen und seismologischen Beobachtungen, das zusätzlich mit Schweredaten untermauert wird. Dies ermöglicht die Simulation der räumlichen variierenden, stationären Wärmeleitung in der Lithosphäre und die Berechnung der mechanischen Stabilität. Schlussendlich werden diese Erkenntnisse in ein dreidimensionales geodynamisches Modell übertragen, welches Aufschluss über die Kompressionsdeformation zwischen dem Gebirge und dessen Vorland Auskunft gibt. Die Modellergebnisse zeigen, dass die ungleichmäßige Zusammensetzung der Lithosphäre der Schlüssel für den heute beobachtbaren thermischen und rheologischen Zustand der Zentralanden ist und damit auch der wichtigste Faktor zur Erklärung der räumlichen Variation und Tiefenverteilung aktiver Deformationsprozesse. Die meisten Erdbeben und neotektonischen Strukturen sind in Bereichen zu finden, für die der stärkste Festigkeitskontrast modelliert wurde. Dies betrifft den Übergang von felsischer, heißer und daher weicher Gebirgslithosphäre des Hauptkamms zu der eher mafischen, kalten und festeren Lithosphäre des Vorlands. Außerdem ergab die dynamische Simulation eine räumliche Zentrierung der zweiten Invariante der Rate des deviatorischen Spannungstensors in der gleichen Region. Damit kann davon ausgegangen werden, dass die stärkste Stauchung genau in diesem Übergang zwischen weichem und festen Material abläuft. Die Erdbebenverteilung in der Vertikalen scheint ebenso vom rheologischen Zustand der Lithosphäre abzuhängen. Für die verschiedenen morphotektonischen Provinzen korreliert die Tiefe, ab der die Erdbebenhäufigkeit abnimmt, jeweils mit der Lage der Übergangszone zwischen Sprödbruchdeformation und duktiler Verformung. Dadurch tritt ein Teil der Erdbeben im duktil verformten Bereich der Erdkruste auf. Weitere Untersuchungen zeigen, dass praktisch die gesamte Seismizität oberhalb der 600°C Isotherme abläuft, welche das obere Temperaturlimit für das Sprödbruchverhalten von Olivin darstellt. Daher kann das Auftreten von Erdbeben unterhalb der modellierten Übergangszone von Sprödbruch zu duktiler Deformation mit dem Vorhandensein von mafischen Gesteinsanteilen erklärt werden, welche als Überbleibsel aus vorangegangenen tektonischen Ereignissen installiert wurden. Eine weitere mögliche Erklärung für solche tiefen Erdbeben ist die Existenz von internen Scherzonen, entlang welcher Sprödbruchdeformation durch herabsetzen des Reibungswiderstandes erleichtert wird. Diese Hypothese lässt sich insbesondere im Santa Barbara System und den Sierras Pampeanas anwenden, da geologische Studien bereits die sukzessive Reaktivierung von Strukturen über einen längeren Zeitraum identifizierten. Insbesondere für das Santa Barbara System zeigen die hier vorgestellten Ergebnisse, dass beide Faktoren, mafische Gesteinsanteile und die Reduzierung des Reibungswiderstandes, nötig sind, um das Auftreten der zu beobachtenden größeren Erdbebentiefe zu erklären. KW - Andes KW - Argentina KW - density modeling KW - thermal field KW - rheology KW - deformation KW - Anden KW - Argentinien KW - Dichtemodellierung KW - thermisches Feld KW - Rheologie KW - Deformation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-506226 ER -