TY - GEN A1 - Fuchs, Matthias A1 - Grosse, Guido A1 - Strauss, Jens A1 - Günther, Frank A1 - Grigoriev, Mikhail N. A1 - Maximov, Georgy M. A1 - Hugelius, Gustaf T1 - Carbon and nitrogen pools in thermokarst-affected permafrost landscapes in Arctic Siberia T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Ice-rich yedoma-dominated landscapes store con- siderable amounts of organic carbon (C) and nitrogen (N) and are vulnerable to degradation under climate warming. We investigate the C and N pools in two thermokarst-affected yedoma landscapes – on Sobo-Sise Island and on Bykovsky Peninsula in the north of eastern Siberia. Soil cores up to 3 m depth were collected along geomorphic gradients and anal- ysed for organic C and N contents. A high vertical sampling density in the profiles allowed the calculation of C and N stocks for short soil column intervals and enhanced under- standing of within-core parameter variability. Profile-level C and N stocks were scaled to the landscape level based on landform classifications from 5 m resolution, multispectral RapidEye satellite imagery. Mean landscape C and N storage in the first metre of soil for Sobo-Sise Island is estimated to be 20.2 kg C m −2 and 1.8 kg N m −2 and for Bykovsky Penin- sula 25.9 kg C m −2 and 2.2 kg N m −2 . Radiocarbon dating demonstrates the Holocene age of thermokarst basin de- posits but also suggests the presence of thick Holocene- age cover layers which can reach up to 2 m on top of in- tact yedoma landforms. Reconstructed sedimentation rates of 0.10–0.57 mm yr −1 suggest sustained mineral soil accu- mulation across all investigated landforms. Both yedoma and thermokarst landforms are characterized by limited accumu- lation of organic soil layers (peat). We further estimate that an active layer deepening of about 100 cm will increase organic C availability in a sea- sonally thawed state in the two study areas by ∼ 5.8 Tg (13.2 kg C m −2 ). Our study demonstrates the importance of increasing the number of C and N storage inventories in ice- rich yedoma and thermokarst environments in order to ac- count for high variability of permafrost and thermokarst en- vironments in pan-permafrost soil C and N pool estimates. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 654 KW - soil organic-carbon KW - Lena River Delta KW - ice-rich permafrost KW - thaw-lake basins KW - climate-change KW - northern Siberia KW - Late Quaternary KW - periglacial landscape KW - Tundra ecosystem KW - Yedoma region Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-418026 SN - 1866-8372 VL - 15 IS - 654 ER - TY - GEN A1 - Zwieback, Simon A1 - Kokelj, Steven V. A1 - Günther, Frank A1 - Boike, Julia A1 - Grosse, Guido A1 - Hajnsek, Irena T1 - Sub-seasonal thaw slump mass wasting is not consistently energy limited at the landscape scale T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Predicting future thaw slump activity requires a sound understanding of the atmospheric drivers and geomorphic controls on mass wasting across a range of timescales. On sub-seasonal timescales, sparse measurements indicate that mass wasting at active slumps is often limited by the energy available for melting ground ice, but other factors such as rainfall or the formation of an insulating veneer may also be relevant. To study the sub-seasonal drivers, we derive topographic changes from single-pass radar interferometric data acquired by the TanDEM-X satellites. The estimated elevation changes at 12m resolution complement the commonly observed planimetric retreat rates by providing information on volume losses. Their high vertical precision (around 30 cm), frequent observations (11 days) and large coverage (5000 km(2)) allow us to track mass wasting as drivers such as the available energy change during the summer of 2015 in two study regions. We find that thaw slumps in the Tuktoyaktuk coastlands, Canada, are not energy limited in June, as they undergo limited mass wasting (height loss of around 0 cm day 1) despite the ample available energy, suggesting the widespread presence of early season insulating snow or debris veneer. Later in summer, height losses generally increase (around 3 cm day 1), but they do so in distinct ways. For many slumps, mass wasting tracks the available energy, a temporal pattern that is also observed at coastal yedoma cliffs on the Bykovsky Peninsula, Russia. However, the other two common temporal trajectories are asynchronous with the available energy, as they track strong precipitation events or show a sudden speed-up in late August respectively. The observed temporal patterns are poorly related to slump characteristics like the headwall height. The contrasting temporal behaviour of nearby thaw slumps highlights the importance of complex local and temporally varying controls on mass wasting. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 926 KW - ground-ice KW - Tandem-X KW - Northeast Siberia KW - thermal regime KW - Peel Plateau KW - permafrost KW - erosion KW - Island KW - delta KW - yedoma Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-445688 SN - 1866-8372 IS - 926 SP - 549 EP - 564 ER - TY - JOUR A1 - Chen, Jie A1 - Günther, Frank A1 - Grosse, Guido A1 - Liu, Lin A1 - Lin, Hui T1 - Sentinel-1 InSAR Measurements of Elevation Changes over Yedoma Uplands on Sobo-Sise Island, Lena Delta JF - Remote sensing N2 - Yedoma-extremely ice-rich permafrost with massive ice wedges formed during the Late Pleistocene-is vulnerable to thawing and degradation under climate warming. Thawing of ice-rich Yedoma results in lowering of surface elevations. Quantitative knowledge about surface elevation changes helps us to understand the freeze-thaw processes of the active layer and the potential degradation of Yedoma deposits. In this study, we use C-band Sentinel-1 InSAR measurements to map the elevation changes over ice-rich Yedoma uplands on Sobo-Sise Island, Lena Delta with frequent revisit observations (as short as six or 12 days). We observe significant seasonal thaw subsidence during summer months and heterogeneous inter-annual elevation changes from 2016-17. We also observe interesting patterns of stronger seasonal thaw subsidence on elevated flat Yedoma uplands by comparing to the surrounding Yedoma slopes. Inter-annual analyses from 2016-17 suggest that our observed positive surface elevation changes are likely caused by the delayed progression of the thaw season in 2017, associated with mean annual air temperature fluctuations. KW - Sentinel-1 InSAR KW - Yedoma uplands KW - Sobo-Sise Island KW - summer heave KW - permafrost thaw subsidence KW - active layer Y1 - 2018 U6 - https://doi.org/10.3390/rs10071152 SN - 2072-4292 VL - 10 IS - 7 PB - MDPI CY - Basel ER - TY - GEN A1 - Nitze, Ingmar A1 - Grosse, Guido A1 - Jones, Benjamin M. A1 - Romanovsky, Vladimir E. A1 - Boike, Julia T1 - Remote sensing quantifies widespread abundance of permafrost region disturbances across the Arctic and Subarctic T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Local observations indicate that climate change and shifting disturbance regimes are causing permafrost degradation. However, the occurrence and distribution of permafrost region disturbances (PRDs) remain poorly resolved across the Arctic and Subarctic. Here we quantify the abundance and distribution of three primary PRDs using time-series analysis of 30-m resolution Landsat imagery from 1999 to 2014. Our dataset spans four continental-scale transects in North America and Eurasia, covering ~10% of the permafrost region. Lake area loss (−1.45%) dominated the study domain with enhanced losses occurring at the boundary between discontinuous and continuous permafrost regions. Fires were the most extensive PRD across boreal regions (6.59%), but in tundra regions (0.63%) limited to Alaska. Retrogressive thaw slumps were abundant but highly localized (<10−5%). Our analysis synergizes the global-scale importance of PRDs. The findings highlight the need to include PRDs in next-generation land surface models to project the permafrost carbon feedback. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 799 KW - Carbon cycle KW - Climate change KW - Cryospheric science KW - Environmental sciences Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-426171 SN - 1866-8372 IS - 799 ER - TY - GEN A1 - Chen, Jie A1 - Günther, Frank A1 - Grosse, Guido A1 - Liu, Lin A1 - Lin, Hui T1 - Sentinel-1 InSAR Measurements of Elevation Changes over Yedoma Uplands on Sobo-Sise Island, Lena Delta T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Yedoma-extremely ice-rich permafrost with massive ice wedges formed during the Late Pleistocene-is vulnerable to thawing and degradation under climate warming. Thawing of ice-rich Yedoma results in lowering of surface elevations. Quantitative knowledge about surface elevation changes helps us to understand the freeze-thaw processes of the active layer and the potential degradation of Yedoma deposits. In this study, we use C-band Sentinel-1 InSAR measurements to map the elevation changes over ice-rich Yedoma uplands on Sobo-Sise Island, Lena Delta with frequent revisit observations (as short as six or 12 days). We observe significant seasonal thaw subsidence during summer months and heterogeneous inter-annual elevation changes from 2016-17. We also observe interesting patterns of stronger seasonal thaw subsidence on elevated flat Yedoma uplands by comparing to the surrounding Yedoma slopes. Inter-annual analyses from 2016-17 suggest that our observed positive surface elevation changes are likely caused by the delayed progression of the thaw season in 2017, associated with mean annual air temperature fluctuations. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 690 KW - Sentinel-1 InSAR KW - Yedoma uplands KW - Sobo-Sise Island KW - summer heave KW - permafrost thaw subsidence KW - active layer Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-426807 SN - 1866-8372 IS - 690 ER - TY - GEN A1 - Lara, Mark J. A1 - Nitze, Ingmar A1 - Grosse, Guido A1 - Martin, Philip A1 - McGuire, A. David T1 - Reduced arctic tundra productivity linked with landform and climate change interactions T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Arctic tundra ecosystems have experienced unprecedented change associated with climate warming over recent decades. Across the Pan-Arctic, vegetation productivity and surface greenness have trended positively over the period of satellite observation. However, since 2011 these trends have slowed considerably, showing signs of browning in many regions. It is unclear what factors are driving this change and which regions/landforms will be most sensitive to future browning. Here we provide evidence linking decadal patterns in arctic greening and browning with regional climate change and local permafrost-driven landscape heterogeneity. We analyzed the spatial variability of decadal-scale trends in surface greenness across the Arctic Coastal Plain of northern Alaska (similar to 60,000 km(2)) using the Landsat archive (1999-2014), in combination with novel 30 m classifications of polygonal tundra and regional watersheds, finding landscape heterogeneity and regional climate change to be the most important factors controlling historical greenness trends. Browning was linked to increased temperature and precipitation, with the exception of young landforms (developed following lake drainage), which will likely continue to green. Spatiotemporal model forecasting suggests carbon uptake potential to be reduced in response to warmer and/or wetter climatic conditions, potentially increasing the net loss of carbon to the atmosphere, at a greater degree than previously expected. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 550 KW - winter warming events KW - permafrost KW - Alaska KW - trends KW - ice KW - CO2 KW - degradation KW - landscapes KW - ecosystem KW - exchange Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-423132 SN - 1866-8372 IS - 550 ER - TY - GEN A1 - Biskaborn, Boris K. A1 - Smith, Sharon L. A1 - Noetzli, Jeannette A1 - Matthes, Heidrun A1 - Vieira, Gonçalo A1 - Streletskiy, Dmitry A. A1 - Schoeneich, Philippe A1 - Romanovsky, Vladimir E. A1 - Lewkowicz, Antoni G. A1 - Abramov, Andrey A1 - Allard, Michel A1 - Boike, Julia A1 - Cable, William L. A1 - Christiansen, Hanne H. A1 - Delaloye, Reynald A1 - Diekmann, Bernhard A1 - Drozdov, Dmitry A1 - Etzelmüller, Bernd A1 - Große, Guido A1 - Guglielmin, Mauro A1 - Ingeman-Nielsen, Thomas A1 - Isaksen, Ketil A1 - Ishikawa, Mamoru A1 - Johansson, Margareta A1 - Joo, Anseok A1 - Kaverin, Dmitry A1 - Kholodov, Alexander A1 - Konstantinov, Pavel A1 - Kröger, Tim A1 - Lambiel, Christophe A1 - Lanckman, Jean-Pierre A1 - Luo, Dongliang A1 - Malkova, Galina A1 - Meiklejohn, Ian A1 - Moskalenko, Natalia A1 - Oliva, Marc A1 - Phillips, Marcia A1 - Ramos, Miguel A1 - Sannel, A. Britta K. A1 - Sergeev, Dmitrii A1 - Seybold, Cathy A1 - Skryabin, Pavel A1 - Vasiliev, Alexander A1 - Wu, Qingbai A1 - Yoshikawa, Kenji A1 - Zheleznyak, Mikhail A1 - Lantuit, Hugues T1 - Permafrost is warming at a global scale T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Permafrost warming has the potential to amplify global climate change, because when frozen sediments thaw it unlocks soil organic carbon. Yet to date, no globally consistent assessment of permafrost temperature change has been compiled. Here we use a global data set of permafrost temperature time series from the Global Terrestrial Network for Permafrost to evaluate temperature change across permafrost regions for the period since the International Polar Year (2007–2009). During the reference decade between 2007 and 2016, ground temperature near the depth of zero annual amplitude in the continuous permafrost zone increased by 0.39 ± 0.15 °C. Over the same period, discontinuous permafrost warmed by 0.20 ± 0.10 °C. Permafrost in mountains warmed by 0.19 ± 0.05 °C and in Antarctica by 0.37 ± 0.10 °C. Globally, permafrost temperature increased by 0.29 ± 0.12 °C. The observed trend follows the Arctic amplification of air temperature increase in the Northern Hemisphere. In the discontinuous zone, however, ground warming occurred due to increased snow thickness while air temperature remained statistically unchanged. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 669 KW - seasonal snow cover KW - thermal state KW - climate-change KW - activ-layer KW - Antarctic Peninsula KW - stability Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-425341 SN - 1866-8372 IS - 669 ER -