TY - JOUR A1 - Panzer, Marcel A1 - Bender, Benedict A1 - Gronau, Norbert T1 - Neural agent-based production planning and control BT - an architectural review JF - Journal of Manufacturing Systems N2 - Nowadays, production planning and control must cope with mass customization, increased fluctuations in demand, and high competition pressures. Despite prevailing market risks, planning accuracy and increased adaptability in the event of disruptions or failures must be ensured, while simultaneously optimizing key process indicators. To manage that complex task, neural networks that can process large quantities of high-dimensional data in real time have been widely adopted in recent years. Although these are already extensively deployed in production systems, a systematic review of applications and implemented agent embeddings and architectures has not yet been conducted. The main contribution of this paper is to provide researchers and practitioners with an overview of applications and applied embeddings and to motivate further research in neural agent-based production. Findings indicate that neural agents are not only deployed in diverse applications, but are also increasingly implemented in multi-agent environments or in combination with conventional methods — leveraging performances compared to benchmarks and reducing dependence on human experience. This not only implies a more sophisticated focus on distributed production resources, but also broadening the perspective from a local to a global scale. Nevertheless, future research must further increase scalability and reproducibility to guarantee a simplified transfer of results to reality. KW - production planning and control KW - machine learning KW - neural networks KW - systematic literature review KW - taxonomy Y1 - 2022 U6 - https://doi.org/10.1016/j.jmsy.2022.10.019 SN - 0278-6125 SN - 1878-6642 VL - 65 SP - 743 EP - 766 PB - Elsevier CY - Amsterdam ER - TY - GEN A1 - Bender, Benedict A1 - Gronau, Norbert ED - Bui, Tung T1 - Introduction to the Minitrack on towards the future of enterprise systems T2 - Zweitveröffentlichungen der Universität Potsdam : Wirtschafts- und Sozialwissenschaftliche Reihe N2 - Enterprise systems have long played an important role in businesses of various sizes. With the increasing complexity of today’s business relationships, pecialized application systems are being used more and more. Moreover, emerging technologies such as artificial intelligence are becoming accessible for enterprise systems. This raises the question of the future role of enterprise systems. This minitrack covers novel ideas that contribute to and shape the future role of enterprise systems with five contributions. T3 - Zweitveröffentlichungen der Universität Potsdam : Wirtschafts- und Sozialwissenschaftliche Reihe - 188 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-605406 SN - 978-0-9981331-5-7 SN - 1867-5808 ER - TY - CHAP A1 - Rojahn, Marcel A1 - Gronau, Norbert ED - Bui, Tung X. T1 - Openness indicators for the evaluation of digital platforms between the launch and maturity phase T2 - Proceedings of the 57th Annual Hawaii International Conference on System Sciences N2 - In recent years, the evaluation of digital platforms has become an important focus in the field of information systems science. The identification of influential indicators that drive changes in digital platforms, specifically those related to openness, is still an unresolved issue. This paper addresses the challenge of identifying measurable indicators and characterizing the transition from launch to maturity in digital platforms. It proposes a systematic analytical approach to identify relevant openness indicators for evaluation purposes. The main contributions of this study are the following (1) the development of a comprehensive procedure for analyzing indicators, (2) the categorization of indicators as evaluation metrics within a multidimensional grid-box model, (3) the selection and evaluation of relevant indicators, (4) the identification and assessment of digital platform architectures during the launch-to-maturity transition, and (5) the evaluation of the applicability of the conceptualization and design process for digital platform evaluation. KW - federated industrial platform ecosystems KW - technologies KW - business models KW - data-driven artifacts KW - design-science research KW - digital platform openness KW - evaluation KW - morphological analysis Y1 - 2024 SN - 978-0-99813-317-1 SP - 4516 EP - 4525 PB - Department of IT Management Shidler College of Business University of Hawaii CY - Honolulu, HI ER - TY - CHAP A1 - Abendroth, Adrian A1 - Bender, Benedict A1 - Gronau, Norbert T1 - The evolution of original ERP customization BT - a systematic literature review of technical possibilities T2 - Proceedings of the 26th International Conference on Enterprise Information Systems N2 - Enterprise Resource Planning (ERP) system customization is often necessary because companies have unique processes that provide their competitive advantage. Despite new technological advances such as cloud computing or model-driven development, technical ERP customization options are either outdated or ambiguously formulated in the scientific literature. Using a systematic literature review (SLR) that analyzes 137 definitions from 26 papers, the result is an analysis and aggregation of technical customization types by providing clearance and aligning with future organizational needs. The results show a shift from ERP code modification in on-premises systems to interface and integration customization in cloud ERP systems, as well as emerging technological opportunities as a way for customers and key users to perform system customization. The study contributes by providing a clear understanding of given customization types and assisting ERP users and vendors in making customization decisions. KW - Enterprise Resource Planning (ERP) System KW - Customization KW - Modification KW - Tailoring KW - Literature Review Y1 - 2024 SN - 978-989-758-692-7 U6 - https://doi.org/10.5220/0012305500003690 SN - 2184-4992 VL - 1 SP - 17 EP - 27 PB - SCITEPRESS - Science and Technology Publications CY - Setúbal ER - TY - CHAP A1 - Klippert, Monika A1 - Stolpmann, Robert A1 - Grum, Marcus A1 - Thim, Christof A1 - Gronau, Norbert A1 - Albers, Albert T1 - Knowledge transfer quality improvement BT - the quality enhancement of knowledge transfers in product engineering T2 - Procedia CIRP N2 - Developing a new product generation requires the transfer of knowledge among various knowledge carriers. Several factors influence knowledge transfer, e.g., the complexity of engineering tasks or the competence of employees, which can decrease the efficiency and effectiveness of knowledge transfers in product engineering. Hence, improving those knowledge transfers obtains great potential, especially against the backdrop of experienced employees leaving the company due to retirement, so far, research results show, that the knowledge transfer velocity can be raised by following the Knowledge Transfer Velocity Model and implementing so-called interventions in a product engineering context. In most cases, the implemented interventions have a positive effect on knowledge transfer speed improvement. In addition to that, initial theoretical findings describe factors influencing the quality of knowledge transfers and outline a setting to empirically investigate how the quality can be improved by introducing a general description of knowledge transfer reference situations and principles to measure the quality of knowledge artifacts. To assess the quality of knowledge transfers in a product engineering context, the Knowledge Transfer Quality Model (KTQM) is created, which serves as a basis to develop and implement quality-dependent interventions for different knowledge transfer situations. As a result, this paper introduces the specifications of eight situation-adequate interventions to improve the quality of knowledge transfers in product engineering following an intervention template. Those interventions are intended to be implemented in an industrial setting to measure the quality of knowledge transfers and validate their effect. KW - knowledge transfer KW - product generation engineering KW - improvement KW - quality KW - intervention Y1 - 2023 U6 - https://doi.org/10.1016/j.procir.2023.02.171 SN - 2212-8271 VL - 119 SP - 919 EP - 925 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Panzer, Marcel A1 - Gronau, Norbert T1 - Enhancing economic efficiency in modular production systems through deep reinforcement learning T2 - Procedia CIRP N2 - In times of increasingly complex production processes and volatile customer demands, the production adaptability is crucial for a company's profitability and competitiveness. The ability to cope with rapidly changing customer requirements and unexpected internal and external events guarantees robust and efficient production processes, requiring a dedicated control concept at the shop floor level. Yet in today's practice, conventional control approaches remain in use, which may not keep up with the dynamic behaviour due to their scenario-specific and rigid properties. To address this challenge, deep learning methods were increasingly deployed due to their optimization and scalability properties. However, these approaches were often tested in specific operational applications and focused on technical performance indicators such as order tardiness or total throughput. In this paper, we propose a deep reinforcement learning based production control to optimize combined techno-financial performance measures. Based on pre-defined manufacturing modules that are supplied and operated by multiple agents, positive effects were observed in terms of increased revenue and reduced penalties due to lower throughput times and fewer delayed products. The combined modular and multi-staged approach as well as the distributed decision-making further leverage scalability and transferability to other scenarios. KW - modular production KW - production control KW - multi-agent system KW - deep reinforcement learning KW - discrete event simulation Y1 - 2024 U6 - https://doi.org/10.1016/j.procir.2023.09.229 SN - 2212-8271 VL - 121 SP - 55 EP - 60 PB - Elsevier CY - Amsterdam ER -