TY - CHAP A1 - Grum, Marcus A1 - Rapp, Simon A1 - Gronau, Norbert A1 - Albers, Albert ED - Shishkov, Boris T1 - Accelerating knowledge BT - the speed optimization of knowledge transfers T2 - Business modeling and software design N2 - As knowledge-intensive processes are often carried out in teams and demand for knowledge transfers among various knowledge carriers, any optimization in regard to the acceleration of knowledge transfers obtains a great economic potential. Exemplified with product development projects, knowledge transfers focus on knowledge acquired in former situations and product generations. An adjustment in the manifestation of knowledge transfers in its concrete situation, here called intervention, therefore can directly be connected to the adequate speed optimization of knowledge-intensive process steps. This contribution presents the specification of seven concrete interventions following an intervention template. Further, it describes the design and results of a workshop with experts as a descriptive study. The workshop was used to assess the practical relevance of interventions designed as well as the identification of practical success factors and barriers of their implementation. KW - knowledge transfers KW - business process optimization KW - interventions KW - product development KW - product generation engineering KW - empirical evaluation Y1 - 2019 SN - 978-3-030-24853-6 SN - 978-3-030-24854-3 U6 - https://doi.org/10.1007/978-3-030-24854-3_7 VL - 356 SP - 95 EP - 113 PB - Springer CY - Cham ER - TY - CHAP A1 - Grum, Marcus A1 - Klippert, Monika A1 - Albers, Albert A1 - Gronau, Norbert A1 - Thim, Christof T1 - Examining the quality of knowledge transfers BT - the draft of an empirical research T2 - Proceedings of the Design Society N2 - Already successfully used products or designs, past projects or our own experiences can be the basis for the development of new products. As reference products or existing knowledge, it is reused in the development process and across generations of products. Since further, products are developed in cooperation, the development of new product generations is characterized by knowledge-intensive processes in which information and knowledge are exchanged between different kinds of knowledge carriers. The particular knowledge transfer here describes the identification of knowledge, its transmission from the knowledge carrier to the knowledge receiver, and its application by the knowledge receiver, which includes embodied knowledge of physical products. Initial empirical findings of the quantitative effects regarding the speed of knowledge transfers already have been examined. However, the factors influencing the quality of knowledge transfer to increase the efficiency and effectiveness of knowledge transfer in product development have not yet been examined empirically. Therefore, this paper prepares an experimental setting for the empirical investigation of the quality of knowledge transfers. KW - knowledge management KW - new product development KW - evaluation Y1 - 2021 U6 - https://doi.org/10.1017/pds.2021.404 SN - 2732-527X VL - 1 SP - 1431 EP - 1440 PB - Cambridge University Press CY - Cambridge ER - TY - JOUR A1 - Klippert, Monika A1 - Stolpmann, Robert A1 - Grum, Marcus A1 - Thim, Christof A1 - Gronau, Norbert A1 - Albers, Albert T1 - Knowledge transfer quality improvement BT - the quality enhancement of knowledge transfers in product engineering JF - Procedia CIRP N2 - Developing a new product generation requires the transfer of knowledge among various knowledge carriers. Several factors influence knowledge transfer, e.g., the complexity of engineering tasks or the competence of employees, which can decrease the efficiency and effectiveness of knowledge transfers in product engineering. Hence, improving those knowledge transfers obtains great potential, especially against the backdrop of experienced employees leaving the company due to retirement, so far, research results show, that the knowledge transfer velocity can be raised by following the Knowledge Transfer Velocity Model and implementing so-called interventions in a product engineering context. In most cases, the implemented interventions have a positive effect on knowledge transfer speed improvement. In addition to that, initial theoretical findings describe factors influencing the quality of knowledge transfers and outline a setting to empirically investigate how the quality can be improved by introducing a general description of knowledge transfer reference situations and principles to measure the quality of knowledge artifacts. To assess the quality of knowledge transfers in a product engineering context, the Knowledge Transfer Quality Model (KTQM) is created, which serves as a basis to develop and implement quality-dependent interventions for different knowledge transfer situations. As a result, this paper introduces the specifications of eight situation-adequate interventions to improve the quality of knowledge transfers in product engineering following an intervention template. Those interventions are intended to be implemented in an industrial setting to measure the quality of knowledge transfers and validate their effect. KW - knowledge transfer KW - product generation engineering KW - improvement KW - quality KW - intervention Y1 - 2023 U6 - https://doi.org/10.1016/j.procir.2023.02.171 SN - 2212-8271 VL - 119 SP - 919 EP - 925 PB - Elsevier CY - Amsterdam ER -