TY - CHAP A1 - Thim, Christof A1 - Gronau, Norbert A1 - Haase, Jennifer A1 - Grum, Marcus A1 - Schüffler, Arnulf A1 - Roling, Wiebke A1 - Kluge, Annette ED - Shishkov, Boris T1 - Modeling change in business processes T2 - Business modeling and software design N2 - Business processes are regularly modified either to capture requirements from the organization’s environment or due to internal optimization and restructuring. Implementing the changes into the individual work routines is aided by change management tools. These tools aim at the acceptance of the process by and empowerment of the process executor. They cover a wide range of general factors and seldom accurately address the changes in task execution and sequence. Furthermore, change is only framed as a learning activity, while most obstacles to change arise from the inability to unlearn or forget behavioural patterns one is acquainted with. Therefore, this paper aims to develop and demonstrate a notation to capture changes in business processes and identify elements that are likely to present obstacles during change. It connects existing research from changes in work routines and psychological insights from unlearning and intentional forgetting to the BPM domain. The results contribute to more transparency in business process models regarding knowledge changes. They provide better means to understand the dynamics and barriers of change processes. KW - intentional forgetting KW - routines KW - business processes KW - unlearning Y1 - 2023 SN - 978-3-031-36756-4 SN - 978-3-031-36757-1 U6 - https://doi.org/10.1007/978-3-031-36757-1_1 SP - 3 EP - 17 PB - Springer Nature CY - Cham ER - TY - CHAP A1 - Grum, Marcus A1 - Thim, Christof A1 - Roling, Wiebke A1 - Schüffler, Arnulf A1 - Kluge, Annette A1 - Gronau, Norbert ED - Masrour, Tawfik ED - El Hassani, Ibtissam ED - Barka, Noureddine T1 - AI case-based reasoning for artificial neural networks T2 - Artificial intelligence and industrial applications N2 - Faced with the triad of time-cost-quality, the realization of production tasks under economic conditions is not trivial. Since the number of Artificial-Intelligence-(AI)-based applications in business processes is increasing more and more nowadays, the efficient design of AI cases for production processes as well as their target-oriented improvement is essential, so that production outcomes satisfy high quality criteria and economic requirements. Both challenge production management and data scientists, aiming to assign ideal manifestations of artificial neural networks (ANNs) to a certain task. Faced with new attempts of ANN-based production process improvements [8], this paper continues research about the optimal creation, provision and utilization of ANNs. Moreover, it presents a mechanism for AI case-based reasoning for ANNs. Experiments clarify continuously improving ANN knowledge bases by this mechanism empirically. Its proof-of-concept is demonstrated by the example of four production simulation scenarios, which cover the most relevant use cases and will be the basis for examining AI cases on a quantitative level. KW - case-based reasoning KW - neural networks KW - industry 4.0 Y1 - 2023 SN - 978-3-031-43523-2 SN - 978-3-031-43524-9 U6 - https://doi.org/10.1007/978-3-031-43524-9_2 VL - 771 SP - 17 EP - 35 PB - Springer CY - Cham ER - TY - CHAP A1 - Grum, Marcus A1 - Klippert, Monika A1 - Albers, Albert A1 - Gronau, Norbert A1 - Thim, Christof T1 - Examining the quality of knowledge transfers BT - the draft of an empirical research T2 - Proceedings of the Design Society N2 - Already successfully used products or designs, past projects or our own experiences can be the basis for the development of new products. As reference products or existing knowledge, it is reused in the development process and across generations of products. Since further, products are developed in cooperation, the development of new product generations is characterized by knowledge-intensive processes in which information and knowledge are exchanged between different kinds of knowledge carriers. The particular knowledge transfer here describes the identification of knowledge, its transmission from the knowledge carrier to the knowledge receiver, and its application by the knowledge receiver, which includes embodied knowledge of physical products. Initial empirical findings of the quantitative effects regarding the speed of knowledge transfers already have been examined. However, the factors influencing the quality of knowledge transfer to increase the efficiency and effectiveness of knowledge transfer in product development have not yet been examined empirically. Therefore, this paper prepares an experimental setting for the empirical investigation of the quality of knowledge transfers. KW - knowledge management KW - new product development KW - evaluation Y1 - 2021 U6 - https://doi.org/10.1017/pds.2021.404 SN - 2732-527X VL - 1 SP - 1431 EP - 1440 PB - Cambridge University Press CY - Cambridge ER -