TY - JOUR A1 - Moradian, Hanieh A1 - Lendlein, Andreas A1 - Gossen, Manfred T1 - Strategies for simultaneous and successive delivery of RNA JF - Journal of molecular medicine N2 - Advanced non-viral gene delivery experiments often require co-delivery of multiple nucleic acids. Therefore, the availability of reliable and robust co-transfection methods and defined selection criteria for their use in, e.g., expression of multimeric proteins or mixed RNA/DNA delivery is of utmost importance. Here, we investigated different co- and successive transfection approaches, with particular focus on in vitro transcribed messenger RNA (IVT-mRNA). Expression levels and patterns of two fluorescent protein reporters were determined, using different IVT-mRNA doses, carriers, and cell types. Quantitative parameters determining the efficiency of co-delivery were analyzed for IVT-mRNAs premixed before nanocarrier formation (integrated co-transfection) and when simultaneously transfecting cells with separately formed nanocarriers (parallel co-transfection), which resulted in a much higher level of expression heterogeneity for the two reporters. Successive delivery of mRNA revealed a lower transfection efficiency in the second transfection round. All these differences proved to be more pronounced for low mRNA doses. Concurrent delivery of siRNA with mRNA also indicated the highest co-transfection efficiency for integrated method. However, the maximum efficacy was shown for successive delivery, due to the kinetically different peak output for the two discretely operating entities. Our findings provide guidance for selection of the co-delivery method best suited to accommodate experimental requirements, highlighting in particular the nucleic acid dose-response dependence on co-delivery on the single-cell level. KW - integrated co-transfection KW - parallel co-transfection KW - successive KW - transfection KW - co-expression KW - in vitro synthesized mRNA KW - transfection methods Y1 - 2020 U6 - https://doi.org/10.1007/s00109-020-01956-1 SN - 0946-2716 SN - 1432-1440 VL - 98 IS - 12 SP - 1767 EP - 1779 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Li, Zhengdong A1 - Xu, Xun A1 - Wang, Weiwei A1 - Kratz, Karl A1 - Sun, Xianlei A1 - Zou, Jie A1 - Deng, Zijun A1 - Jung, Friedrich Wilhelm A1 - Gossen, Manfred A1 - Ma, Nan A1 - Lendlein, Andreas T1 - Modulation of the mesenchymal stem cell migration capacity via preconditioning with topographic microstructure JF - Clinical hemorheology and microcirculation : blood flow and vessels N2 - Controlling mesenchymal stem cells (MSCs) behavior is necessary to fully exploit their therapeutic potential. Various approaches are employed to effectively influence the migration capacity of MSCs. Here, topographic microstructures with different microscale roughness were created on polystyrene (PS) culture vessel surfaces as a feasible physical preconditioning strategy to modulate MSC migration. By analyzing trajectories of cells migrating after reseeding, we demonstrated that the mobilization velocity of human adipose derived mesenchymal stem cells (hADSCs) could be promoted by and persisted after brief preconditioning with the appropriate microtopography. Moreover, the elevated activation levels of focal adhesion kinase (FAK) and mitogen-activated protein kinase (MAPK) in hADSCs were also observed during and after the preconditioning process. These findings underline the potential enhancement of in vivo therapeutic efficacy in regenerative medicine via transplantation of topographic microstructure preconditioned stem cells. KW - Mesenchymal stem cells KW - precondition KW - microstructure KW - migration KW - FAK-MAPK Y1 - 2017 U6 - https://doi.org/10.3233/CH-179208 SN - 1386-0291 SN - 1875-8622 VL - 67 SP - 267 EP - 278 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Moradian, Hanieh A1 - Gossen, Manfred A1 - Lendlein, Andreas T1 - Co-delivery of genes can be confounded by bicistronic vector design JF - MRS Communications N2 - Maximizing the efficiency of nanocarrier-mediated co-delivery of genes for co-expression in the same cell is critical for many applications. Strategies to maximize co-delivery of nucleic acids (NA) focused largely on carrier systems, with little attention towards payload composition itself. Here, we investigated the effects of different payload designs: co-delivery of two individual "monocistronic" NAs versus a single bicistronic NA comprising two genes separated by a 2A self-cleavage site. Unexpectedly, co-delivery via the monocistronic design resulted in a higher percentage of co-expressing cells, while predictive co-expression via the bicistronic design remained elusive. Our results will aid the application-dependent selection of the optimal methodology for co-delivery of genes. KW - Molecular KW - Packaging KW - Protein Y1 - 2022 U6 - https://doi.org/10.1557/s43579-021-00128-7 SN - 2159-6859 SN - 2159-6867 VL - 12 IS - 2 SP - 145 EP - 153 PB - Springer CY - Heidelberg ER - TY - GEN A1 - Listek, Martin A1 - Hönow, Anja A1 - Gossen, Manfred A1 - Hanack, Katja T1 - A novel selection strategy for antibody producing hybridoma cells based on a new transgenic fusion cell line T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - The use of monoclonal antibodies is ubiquitous in science and biomedicine but the generation and validation process of antibodies is nevertheless complicated and time-consuming. To address these issues we developed a novel selective technology based on an artificial cell surface construct by which secreted antibodies were connected to the corresponding hybridoma cell when they possess the desired antigen-specificity. Further the system enables the selection of desired isotypes and the screening for potential cross-reactivities in the same context. For the design of the construct we combined the transmembrane domain of the EGF-receptor with a hemagglutinin epitope and a biotin acceptor peptide and performed a transposon-mediated transfection of myeloma cell lines. The stably transfected myeloma cell line was used for the generation of hybridoma cells and an antigen- and isotype-specific screening method was established. The system has been validated for globular protein antigens as well as for haptens and enables a fast and early stage selection and validation of monoclonal antibodies in one step. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 865 KW - Antibody generation KW - Assay systems Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-459893 SN - 1866-8372 IS - 865 ER - TY - JOUR A1 - Listek, Martin A1 - Hönow, Anja A1 - Gossen, Manfred A1 - Hanack, Katja T1 - A novel selection strategy for antibody producing hybridoma cells based on a new transgenic fusion cell line JF - Scientific Reports N2 - The use of monoclonal antibodies is ubiquitous in science and biomedicine but the generation and validation process of antibodies is nevertheless complicated and time-consuming. To address these issues we developed a novel selective technology based on an artificial cell surface construct by which secreted antibodies were connected to the corresponding hybridoma cell when they possess the desired antigen-specificity. Further the system enables the selection of desired isotypes and the screening for potential cross-reactivities in the same context. For the design of the construct we combined the transmembrane domain of the EGF-receptor with a hemagglutinin epitope and a biotin acceptor peptide and performed a transposon-mediated transfection of myeloma cell lines. The stably transfected myeloma cell line was used for the generation of hybridoma cells and an antigen- and isotype-specific screening method was established. The system has been validated for globular protein antigens as well as for haptens and enables a fast and early stage selection and validation of monoclonal antibodies in one step. KW - Antibody generation KW - Assay systems Y1 - 2019 U6 - https://doi.org/10.1038/s41598-020-58571-w SN - 2045-2322 VL - 10 PB - Macmillan Publishers Limited, part of Springer Nature CY - London ER - TY - JOUR A1 - Lau, Skadi A1 - Gossen, Manfred A1 - Lendlein, Andreas T1 - Designing cardiovascular implants taking in view the endothelial basement membrane JF - International journal of molecular sciences N2 - Insufficient endothelialization of cardiovascular grafts is a major hurdle in vascular surgery and regenerative medicine, bearing a risk for early graft thrombosis. Neither of the numerous strategies pursued to solve these problems were conclusive. Endothelialization is regulated by the endothelial basement membrane (EBM), a highly specialized part of the vascular extracellular matrix. Thus, a detailed understanding of the structure-function interrelations of the EBM components is fundamental for designing biomimetic materials aiming to mimic EBM functions. In this review, a detailed description of the structure and functions of the EBM are provided, including the luminal and abluminal interactions with adjacent cell types, such as vascular smooth muscle cells. Moreover, in vivo as well as in vitro strategies to build or renew EBM are summarized and critically discussed. The spectrum of methods includes vessel decellularization and implant biofunctionalization strategies as well as tissue engineering-based approaches and bioprinting. Finally, the limitations of these methods are highlighted, and future directions are suggested to help improve future design strategies for EBM-inspired materials in the cardiovascular field. KW - endothelial cells KW - bioinstructive implants KW - vascular grafts KW - tissue KW - engineering KW - bioprinting KW - bioinspired materials KW - biological membrane KW - endothelial basement membrane KW - biomaterial Y1 - 2021 U6 - https://doi.org/10.3390/ijms222313120 SN - 1422-0067 VL - 22 IS - 23 PB - MDPI CY - Basel ER - TY - JOUR A1 - Wang, Weiwei A1 - Naolou, Toufik A1 - Ma, Nan A1 - Deng, Zijun A1 - Xu, Xun A1 - Mansfeld, Ulrich A1 - Wischke, Christian A1 - Gossen, Manfred A1 - Neffe, Axel T. A1 - Lendlein, Andreas T1 - Polydepsipeptide Block-Stabilized Polyplexes for Efficient Transfection of Primary Human Cells JF - Biomacromolecules : an interdisciplinary journal focused at the interface of polymer science and the biological sciences N2 - The rational design of a polyplex gene carrier aims to balance maximal effectiveness of nucleic acid transfection into cells with minimal adverse effects. Depsipeptide blocks with an M (n) similar to 5 kDa exhibiting strong physical interactions were conjugated with PEI moieties (2.5 or 10 kDa) to di- and triblock copolymers. Upon nanoparticle formation and complexation with DNA, the resulting polyplexes (sizes typically 60-150 nm) showed remarkable stability compared to PEI-only or lipoplex and facilitated efficient gene delivery. Intracellular trafficking was visualized by observing fluorescence-labeled pDNA and highlighted the effective cytoplasmic uptake of polyplexes and release of DNA to the perinuclear space. Specifically, a triblock copolymer with a middle depsipeptide block and two 10 kDa PEI swallowtail structures mediated the highest levels of transgenic VEGF secretion in mesenchymal stem cells with low cytotoxicity. These nanocarriers form the basis for a delivery platform technology, especially for gene transfer to primary human cells. Y1 - 2017 U6 - https://doi.org/10.1021/acs.biomac.7b01034 SN - 1525-7797 SN - 1526-4602 VL - 18 SP - 3819 EP - 3833 PB - American Chemical Society CY - Washington ER - TY - GEN A1 - Moradian, Hanieh A1 - Roch, Toralf A1 - Lendlein, Andreas A1 - Gossen, Manfred T1 - mRNA transfection-induced activation of primary human monocytes and macrophages BT - Dependence on carrier system and nucleotide modifcation T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Monocytes and macrophages are key players in maintaining immune homeostasis. Identifying strategies to manipulate their functions via gene delivery is thus of great interest for immunological research and biomedical applications. We set out to establish conditions for mRNA transfection in hard-to-transfect primary human monocytes and monocyte-derived macrophages due to the great potential of gene expression from in vitro transcribed mRNA for modulating cell phenotypes. mRNA doses, nucleotide modifications, and different carriers were systematically explored in order to optimize high mRNA transfer rates while minimizing cell stress and immune activation. We selected three commercially available mRNA transfection reagents including liposome and polymer-based formulations, covering different application spectra. Our results demonstrate that liposomal reagents can particularly combine high gene transfer rates with only moderate immune cell activation. For the latter, use of specific nucleotide modifications proved essential. In addition to improving efficacy of gene transfer, our findings address discrete aspects of innate immune activation using cytokine and surface marker expression, as well as cell viability as key readouts to judge overall transfection efficiency. The impact of this study goes beyond optimizing transfection conditions for immune cells, by providing a framework for assessing new gene carrier systems for monocyte and macrophage, tailored to specific applications. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1403 KW - sirna transfection KW - mediated delivery KW - gene delivery KW - efficient KW - immunogenicity KW - lipoplexes KW - cells KW - therapeutics KW - polarization KW - pathways Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-515694 SN - 1866-8372 IS - 1 ER - TY - JOUR A1 - Moradian, Hanieh A1 - Roch, Toralf A1 - Lendlein, Andreas A1 - Gossen, Manfred T1 - mRNA transfection-induced activation of primary human monocytes and macrophages BT - Dependence on carrier system and nucleotide modifcation JF - Scientific reports N2 - Monocytes and macrophages are key players in maintaining immune homeostasis. Identifying strategies to manipulate their functions via gene delivery is thus of great interest for immunological research and biomedical applications. We set out to establish conditions for mRNA transfection in hard-to-transfect primary human monocytes and monocyte-derived macrophages due to the great potential of gene expression from in vitro transcribed mRNA for modulating cell phenotypes. mRNA doses, nucleotide modifications, and different carriers were systematically explored in order to optimize high mRNA transfer rates while minimizing cell stress and immune activation. We selected three commercially available mRNA transfection reagents including liposome and polymer-based formulations, covering different application spectra. Our results demonstrate that liposomal reagents can particularly combine high gene transfer rates with only moderate immune cell activation. For the latter, use of specific nucleotide modifications proved essential. In addition to improving efficacy of gene transfer, our findings address discrete aspects of innate immune activation using cytokine and surface marker expression, as well as cell viability as key readouts to judge overall transfection efficiency. The impact of this study goes beyond optimizing transfection conditions for immune cells, by providing a framework for assessing new gene carrier systems for monocyte and macrophage, tailored to specific applications. KW - sirna transfection KW - mediated delivery KW - gene delivery KW - efficient KW - immunogenicity KW - lipoplexes KW - cells KW - therapeutics KW - polarization KW - pathways Y1 - 2020 U6 - https://doi.org/10.1038/s41598-020-60506-4 SN - 2045-2322 VL - 10 IS - 1 SP - 1 EP - 15 PB - Springer Nature CY - London ER - TY - JOUR A1 - Lau, Skadi A1 - Gossen, Manfred A1 - Lendlein, Andreas A1 - Jung, Friedrich T1 - Differential sensitivity of assays for determining vein endothelial cell senescence JF - Clinical hemorheology and microcirculation : blood flow and vessels N2 - In vivo endothelialization of polymer-based cardiovascular implant materials is a promising strategy to reduce the risk of platelet adherence and the subsequent thrombus formation and implant failure. However, endothelial cells from elderly patients are likely to exhibit a senescent phenotype that may counteract endothelialization. The senescence status of cells should therefore be investigated prior to implantation of devices designed to be integrated in the blood vessel wall. Here, human umbilical vein endothelial cells (HUVEC) were cultivated up to passage (P) 4, 10 and 26/27 to determine the population doubling time and the senescence status by four different methods. Determination of the senescence-associated beta-galactosidase activity (SA-beta-Gal) was carried out by colorimetric staining and microscopy (i), as well as by photometric quantification (ii), and the expression of senescence-associated nuclear proteins p16 and p21 as well as the proliferation marker Ki67 was assessed by immunostaining (iii), and by flow cytometry (iv). The population doubling time of P27-cells was remarkably greater (103 +/- 65 h) compared to P4-cells (24 +/- 3 h) and P10-cell (37 +/- 15 h). Among the four different methods tested, the photometric SA-beta-Gal activity assay and the flow cytometric determination of p16 and Ki67 were most effective in discriminating P27-cells from P4- and P10-cells. These methods combined with functional endothelial cell analyses might aid predictions on the performance of implant endothelialization in vivo. KW - Ageing KW - population doubling time KW - senescence-associated KW - beta-galactosidase KW - cell cycle inhibitors KW - p16 KW - p21 KW - Ki67 Y1 - 2022 U6 - https://doi.org/10.3233/CH-211294 SN - 1386-0291 SN - 1875-8622 VL - 81 IS - 3 SP - 191 EP - 203 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Lau, Skadi A1 - Maier, Anna A1 - Braune, Steffen A1 - Gossen, Manfred A1 - Lendlein, Andreas T1 - Effect of endothelial culture medium composition on platelet responses to polymeric biomaterials JF - International journal of molecular sciences N2 - Near-physiological in vitro thrombogenicity test systems for the evaluation of blood-contacting endothelialized biomaterials requires co-cultivation with platelets (PLT). However, the addition of PLT has led to unphysiological endothelial cell (EC) detachment in such in vitro systems. A possible cause for this phenomenon may be PLT activation triggered by the applied endothelial cell medium, which typically consists of basal medium (BM) and nine different supplements. To verify this hypothesis, the influence of BM and its supplements was systematically analyzed regarding PLT responses. For this, human platelet rich plasma (PRP) was mixed with BM, BM containing one of nine supplements, or with BM containing all supplements together. PLT adherence analysis was carried out in six-channel slides with plasma-treated cyclic olefin copolymer (COC) and poly(tetrafluoro ethylene) (PTFE, as a positive control) substrates as part of the six-channel slides in the absence of EC and under static conditions. PLT activation and aggregation were analyzed using light transmission aggregometry and flow cytometry (CD62P). Medium supplements had no effect on PLT activation and aggregation. In contrast, supplements differentially affected PLT adherence, however, in a polymer- and donor-dependent manner. Thus, the use of standard endothelial growth medium (BM + all supplements) maintains functionality of PLT under EC compatible conditions without masking the differences of PLT adherence on different polymeric substrates. These findings are important prerequisites for the establishment of a near-physiological in vitro thrombogenicity test system assessing polymer-based cardiovascular implant materials in contact with EC and PLT. KW - cyclic olefin copolymer KW - poly(tetrafluoroethylene) KW - endothelial cells KW - platelets KW - in vitro thrombogenicity testing Y1 - 2021 U6 - https://doi.org/10.3390/ijms22137006 SN - 1422-0067 SN - 1661-6596 VL - 22 IS - 13 PB - Molecular Diversity Preservation International CY - Basel ER -