TY - JOUR A1 - Maximova, Maria A1 - Giese, Holger A1 - Krause, Christian T1 - Probabilistic timed graph transformation systems JF - Journal of Logical and Algebraic Methods in Programming N2 - Today, software has become an intrinsic part of complex distributed embedded real-time systems. The next generation of embedded real-time systems will interconnect the today unconnected systems via complex software parts and the service-oriented paradigm. Due to these interconnections, the architecture of systems can be subject to changes at run-time, e.g. when dynamic binding of service end-points is employed or complex collaborations are established dynamically. However, suitable formalisms and techniques that allow for modeling and analysis of timed and probabilistic behavior of such systems as well as of their structure dynamics do not exist so far. To fill the identified gap, we propose Probabilistic Timed Graph Transformation Systems (PTGTSs) as a high-level description language that supports all the necessary aspects of structure dynamics, timed behavior, and probabilistic behavior. We introduce the formal model of PTGTSs in this paper as well as present and formally verify a mapping of models with finite state spaces to probabilistic timed automata (PTA) that allows to use the PRISM model checker to analyze PTGTS models with respect to PTCTL properties. (C) 2018 Elsevier Inc. All rights reserved. KW - Graph transformations KW - Probabilistic timed automata KW - PTCTL KW - PRISM model checker KW - HENSHIN Y1 - 2018 U6 - https://doi.org/10.1016/j.jlamp.2018.09.003 SN - 2352-2208 VL - 101 SP - 110 EP - 131 PB - Elsevier CY - New York ER - TY - JOUR A1 - Dyck, Johannes A1 - Giese, Holger A1 - Lambers, Leen T1 - Automatic verification of behavior preservation at the transformation level for relational model transformation JF - Software and systems modeling N2 - The correctness of model transformations is a crucial element for model-driven engineering of high-quality software. In particular, behavior preservation is an important correctness property avoiding the introduction of semantic errors during the model-driven engineering process. Behavior preservation verification techniques show some kind of behavioral equivalence or refinement between source and target model of the transformation. Automatic tool support is available for verifying behavior preservation at the instance level, i.e., for a given source and target model specified by the model transformation. However, until now there is no sound and automatic verification approach available at the transformation level, i.e., for all source and target models. In this article, we extend our results presented in earlier work (Giese and Lambers, in: Ehrig et al (eds) Graph transformations, Springer, Berlin, 2012) and outline a new transformation-level approach for the sound and automatic verification of behavior preservation captured by bisimulation resp.simulation for outplace model transformations specified by triple graph grammars and semantic definitions given by graph transformation rules. In particular, we first show how behavior preservation can be modeled in a symbolic manner at the transformation level and then describe that transformation-level verification of behavior preservation can be reduced to invariant checking of suitable conditions for graph transformations. We demonstrate that the resulting checking problem can be addressed by our own invariant checker for an example of a transformation between sequence charts and communicating automata. KW - Relational model transformation KW - Formal verification of behavior preservation KW - Behavioral equivalence and refinement KW - Bisimulation and simulation KW - Graph transformation KW - Triple graph grammars KW - Invariant checking Y1 - 2018 U6 - https://doi.org/10.1007/s10270-018-00706-9 SN - 1619-1366 SN - 1619-1374 VL - 18 IS - 5 SP - 2937 EP - 2972 PB - Springer CY - Heidelberg ER - TY - BOOK A1 - Krause, Christian A1 - Giese, Holger T1 - Quantitative modeling and analysis of service-oriented real-time systems using interval probabilistic timed automata N2 - One of the key challenges in service-oriented systems engineering is the prediction and assurance of non-functional properties, such as the reliability and the availability of composite interorganizational services. Such systems are often characterized by a variety of inherent uncertainties, which must be addressed in the modeling and the analysis approach. The different relevant types of uncertainties can be categorized into (1) epistemic uncertainties due to incomplete knowledge and (2) randomization as explicitly used in protocols or as a result of physical processes. In this report, we study a probabilistic timed model which allows us to quantitatively reason about nonfunctional properties for a restricted class of service-oriented real-time systems using formal methods. To properly motivate the choice for the used approach, we devise a requirements catalogue for the modeling and the analysis of probabilistic real-time systems with uncertainties and provide evidence that the uncertainties of type (1) and (2) in the targeted systems have a major impact on the used models and require distinguished analysis approaches. The formal model we use in this report are Interval Probabilistic Timed Automata (IPTA). Based on the outlined requirements, we give evidence that this model provides both enough expressiveness for a realistic and modular specifiation of the targeted class of systems, and suitable formal methods for analyzing properties, such as safety and reliability properties in a quantitative manner. As technical means for the quantitative analysis, we build on probabilistic model checking, specifically on probabilistic time-bounded reachability analysis and computation of expected reachability rewards and costs. To carry out the quantitative analysis using probabilistic model checking, we developed an extension of the Prism tool for modeling and analyzing IPTA. Our extension of Prism introduces a means for modeling probabilistic uncertainty in the form of probability intervals, as required for IPTA. For analyzing IPTA, our Prism extension moreover adds support for probabilistic reachability checking and computation of expected rewards and costs. We discuss the performance of our extended version of Prism and compare the interval-based IPTA approach to models with fixed probabilities. N2 - Eine der wichtigsten Herausforderungen in der Entwicklung von Service-orientierten Systemen ist die Vorhersage und die Zusicherung von nicht-funktionalen Eigenschaften, wie Ausfallsicherheit und Verfügbarkeit von zusammengesetzten, interorganisationellen Diensten. Diese Systeme sind oft charakterisiert durch eine Vielzahl von inhärenten Unsicherheiten, welche sowohl in der Modellierung als auch in der Analyse eine Rolle spielen. Die verschiedenen relevanten Arten von Unsicherheiten können eingeteilt werden in (1) epistemische Unsicherheiten aufgrund von unvollständigem Wissen und (2) Zufall als Mittel in Protokollen oder als Resultat von physikalischen Prozessen. In diesem Bericht wird ein probabilistisches, Zeit-behaftetes Modell untersucht, welches es ermöglicht quantitative Aussagen über nicht-funktionale Eigenschaften von einer eingeschränkten Klasse von Service-orientierten Echtzeitsystemen mittels formaler Methoden zu treffen. Zur Motivation und Einordnung wird ein Anforderungskatalog für probabilistische Echtzeitsysteme mit Unsicherheiten erstellt und gezeigt, dass die Unsicherheiten vom Typ (1) und (2) in den untersuchten Systemen einen Ein uss auf die Wahl der Modellierungs- und der Analysemethode haben. Als formales Modell werden Interval Probabilistic Timed Automata (IPTA) benutzt. Basierend auf den erarbeiteten Anforderungen wird gezeigt, dass dieses Modell sowohl ausreichende Ausdrucksstärke für eine realistische und modulare Spezifikation als auch geeignete formale Methoden zur Bestimmung von quantitativen Sicherheits- und Zuverlässlichkeitseigenschaften bietet. Als technisches Mittel für die quantitative Analyse wird probabilistisches Model Checking, speziell probabilistische Zeit-beschränkte Erreichbarkeitsanalyse und Bestimmung von Erwartungswerten für Kosten und Vergütungen eingesetzt. Um die quantitative Analyse mittels probabilistischem Model Checking durchzuführen, wird eine Erweiterung des Prism-Werkzeugs zur Modellierung und Analyse von IPTA eingeführt. Die präsentierte Erweiterung von Prism ermöglicht die Modellierung von probabilistischen Unsicherheiten mittelsWahrscheinlichkeitsintervallen, wie sie für IPTA benötigt werden. Zur Verifikation wird probabilistische Erreichbarkeitsanalyse und die Berechnung von Erwartungswerten durch das Werkzeug unterstützt. Es wird die Performanz der Prism-Erweiterung untersucht und der Intervall-basierte IPTA-Ansatz mit Modellen mit festen Wahrscheinlichkeitswerten verglichen. T3 - Technische Berichte des Hasso-Plattner-Instituts für Digital Engineering an der Universität Potsdam - 56 KW - Service-orientierte Systme KW - Echtzeitsysteme KW - Quantitative Analysen KW - Formale Verifikation KW - service-oriented systems KW - real-time systems KW - quantitative analysis KW - formal verification methods Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-57845 SN - 978-3-86956-171-4 PB - Universitätsverlah Potsdam CY - Potsdam ER - TY - BOOK A1 - Giese, Holger A1 - Hildebrandt, Stephan A1 - Neumann, Stefan A1 - Wätzoldt, Sebastian T1 - Industrial case study on the integration of SysML and AUTOSAR with triple graph grammars N2 - During the overall development of complex engineering systems different modeling notations are employed. For example, in the domain of automotive systems system engineering models are employed quite early to capture the requirements and basic structuring of the entire system, while software engineering models are used later on to describe the concrete software architecture. Each model helps in addressing the specific design issue with appropriate notations and at a suitable level of abstraction. However, when we step forward from system design to the software design, the engineers have to ensure that all decisions captured in the system design model are correctly transferred to the software engineering model. Even worse, when changes occur later on in either model, today the consistency has to be reestablished in a cumbersome manual step. In this report, we present in an extended version of [Holger Giese, Stefan Neumann, and Stephan Hildebrandt. Model Synchronization at Work: Keeping SysML and AUTOSAR Models Consistent. In Gregor Engels, Claus Lewerentz, Wilhelm Schäfer, Andy Schürr, and B. Westfechtel, editors, Graph Transformations and Model Driven Enginering - Essays Dedicated to Manfred Nagl on the Occasion of his 65th Birthday, volume 5765 of Lecture Notes in Computer Science, pages 555–579. Springer Berlin / Heidelberg, 2010.] how model synchronization and consistency rules can be applied to automate this task and ensure that the different models are kept consistent. We also introduce a general approach for model synchronization. Besides synchronization, the approach consists of tool adapters as well as consistency rules covering the overlap between the synchronized parts of a model and the rest. We present the model synchronization algorithm based on triple graph grammars in detail and further exemplify the general approach by means of a model synchronization solution between system engineering models in SysML and software engineering models in AUTOSAR which has been developed for an industrial partner. In the appendix as extension to [19] the meta-models and all TGG rules for the SysML to AUTOSAR model synchronization are documented. N2 - Bei der Entwicklung komplexer technischer Systeme werden verschiedene Modellierungssprachen verwendet. Zum Beispiel werden bei der Entwicklung von Systemen in der Automobilindustrie bereits früh im Entwicklungsprozess Systemmodelle verwendet, um die Anforderungen und die grobe Struktur des Gesamtsystems darzustellen. Später werden Softwaremodelle verwendet, um die konkrete Softwarearchitektur zu modellieren. Jedes Modell stellt spezifische Entwurfsaspekte mit Hilfe passender Notationen auf einem angemessenen Abstraktionsniveau dar. Wenn jedoch vom Systementwurf zum Softwareentwurf übergegangen wird, müssen die Entwicklungsingenieure sicherstellen, dass alle Entwurfsentscheidungen, die im Systemmodell enthalten sind, korrekt auf das Softwaremodell übertragen werden. Sobald danach auch noch Änderungen auftreten, muss die Konsistenz zwischen den Modellen in einem aufwändigen manuellen Schritt wiederhergestellt werden. In diesem Bericht zeigen wir, wie Modellsynchronisation und Konsistenzregeln zur Automatisierung dieses Arbeitsschrittes verwendet und die Konsistenz zwischen den Modellen sichergestellt werden können. Außerdem stellen wir einen allgemeinen Ansatz zur Modellsynchronisation vor. Neben der reinen Synchronisation umfasst unsere Lösung weiterhin Tool-Adapter, sowie Konsistenzregeln, die sowohl die Teile der Modelle abdecken, die synchronisiert werden können, als auch die restlichen Teile. Der Modellsynchronisationsalgorithmus basiert auf Tripel-Graph-Grammatiken und wird im Detail erläutert. An Hand einer konkreten Transformation zwischen SysML- und AUTOSAR-Modellen, die im Rahmen eines Industrieprojektes entwickelt wurde, wird der Ansatz demonstriert. Im Anhang des Berichts sind alle TGG-Regeln für die SysML-zu-AUTOSAR-Transformation dokumentiert. T3 - Technische Berichte des Hasso-Plattner-Instituts für Digital Engineering an der Universität Potsdam - 57 KW - Model Transformation KW - Model Synchronisation KW - SysML KW - AUTOSAR KW - Tripel-Graph-Grammatik KW - Model Transformation KW - Model Synchronization KW - SysML KW - AUTOSAR KW - Triple Graph Grammar Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-60184 SN - 978-3-86956-191-2 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - BOOK A1 - Neumann, Stefan A1 - Giese, Holger T1 - Scalable compatibility for embedded real-time components via language progressive timed automata N2 - The proper composition of independently developed components of an embedded real- time system is complicated due to the fact that besides the functional behavior also the non-functional properties and in particular the timing have to be compatible. Nowadays related compatibility problems have to be addressed in a cumbersome integration and configuration phase at the end of the development process, that in the worst case may fail. Therefore, a number of formal approaches have been developed, which try to guide the upfront decomposition of the embedded real-time system into components such that integration problems related to timing properties can be excluded and that suitable configurations can be found. However, the proposed solutions require a number of strong assumptions that can be hardly fulfilled or the required analysis does not scale well. In this paper, we present an approach based on timed automata that can provide the required guarantees for the later integration without strong assumptions, which are difficult to match in practice. The approach provides a modular reasoning scheme that permits to establish the required guarantees for the integration employing only local checks, which therefore also scales. It is also possible to determine potential configuration settings by means of timed game synthesis. N2 - Die korrekte Komposition individuell entwickelter Komponenten von eingebetteten Realzeitsystemen ist eine Herausforderung, da neben funktionalen Eigenschaften auch nicht funktionale Eigenschaften berücksichtigt werden müssen. Ein Beispiel hierfür ist die Kompatibilität von Realzeiteigenschaften, welche eine entscheidende Rolle in eingebetteten Systemen spielen. Heutzutage wird die Kompatibilität derartiger Eigenschaften in einer aufwändigen Integrations- und Konfigurationstests am Ende des Entwicklungsprozesses geprüft, wobei diese Tests im schlechtesten Fall fehlschlagen. Aus diesem Grund wurde eine Zahl an formalen Verfahren Entwickelt, welche eine frühzeitige Analyse von Realzeiteigenschaften von Komponenten erlauben, sodass Inkompatibilitäten von Realzeiteigenschaften in späteren Phasen ausgeschlossen werden können. Existierenden Verfahren verlangen jedoch, dass eine Reihe von Bedingungen erfüllt sein muss, welche von realen Systemen nur schwer zu erfüllen sind, oder aber, die verwendeten Analyseverfahren skalieren nicht für größere Systeme. In dieser Arbeit wird ein Ansatz vorgestellt, welcher auf dem formalen Modell des Timed Automaton basiert und der keine Bedingungen verlangt, die von einem realen System nur schwer erfüllt werden können. Der in dieser Arbeit vorgestellte Ansatz enthält ein Framework, welches eine modulare Analyse erlaubt, bei der ausschließlich miteinender kommunizierende Komponenten paarweise überprüft werden müssen. Somit wird eine skalierbare Analyse von Realzeiteigenschaften ermöglicht, die keine Bedingungen verlangt, welche nur bedingt von realen Systemen erfüllt werden können. T3 - Technische Berichte des Hasso-Plattner-Instituts für Digital Engineering an der Universität Potsdam - 65 KW - Formale Verifikation KW - Realzeitsysteme KW - Eingebettete Systeme KW - Timed Automata KW - verification KW - real-time systems KW - timed automata KW - embedded-systems Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-63853 SN - 978-3-86956-226-1 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - BOOK A1 - Hebig, Regina A1 - Giese, Holger A1 - Batoulis, Kimon A1 - Langer, Philipp A1 - Zamani Farahani, Armin A1 - Yao, Gary A1 - Wolowyk, Mychajlo T1 - Development of AUTOSAR standard documents at Carmeq GmbH T1 - Entwicklung der AUTOSAR-Standarddokumente bei Carmeq GmbH BT - a case study BT - eine Fall Studie N2 - This report documents the captured MDE history of Carmeq GmbH, in context of the project Evolution of MDE Settings in Practice. The goal of the project is the elicitation of MDE approaches and their evolution. N2 - Dieser technische Bericht dokumentiert wie sich der MDE Ansatz zur Entwicklung von Softwarestandardisierungsdokumenten bei der Carmeq GmbH im Laufe der Zeit verändert hat. Diese Historie wurde im Rahmen des Projektes "Evolution of MDE Settings in Practice" (Evolution von MDE Ansätzen in der Praxis) erstellt. Ziel dieses Projektes ist die Erhebung von MDE Ansätzen und ihrer Evolution. T3 - Technische Berichte des Hasso-Plattner-Instituts für Digital Engineering an der Universität Potsdam - 92 KW - model-driven engineering KW - MDE settings KW - evolution in MDE KW - case study KW - modellgetriebene Entwicklung KW - MDE Ansatz KW - Evolution in MDE KW - Fallstudie Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-71535 SN - 978-3-86956-317-6 SN - 1613-5652 SN - 2191-1665 IS - 92 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - GEN A1 - Brand, Thomas A1 - Giese, Holger T1 - Generic adaptive monitoring based on executed architecture runtime model queries and events T2 - IEEE Xplore N2 - Monitoring is a key functionality for automated decision making as it is performed by self-adaptive systems, too. Effective monitoring provides the relevant information on time. This can be achieved with exhaustive monitoring causing a high overhead consumption of economical and ecological resources. In contrast, our generic adaptive monitoring approach supports effectiveness with increased efficiency. Also, it adapts to changes regarding the information demand and the monitored system without additional configuration and software implementation effort. The approach observes the executions of runtime model queries and processes change events to determine the currently required monitoring configuration. In this paper we explicate different possibilities to use the approach and evaluate their characteristics regarding the phenomenon detection time and the monitoring effort. Our approach allows balancing between those two characteristics. This makes it an interesting option for the monitoring function of self-adaptive systems because for them usually very short-lived phenomena are not relevant. Y1 - 2019 SN - 978-1-7281-2731-6 U6 - https://doi.org/10.1109/SASO.2019.00012 SN - 1949-3673 SP - 17 EP - 22 PB - IEEE CY - New York ER - TY - GEN A1 - Giese, Holger Burkhard T1 - Software Engineering for Smart Cyber-Physical Systems BT - Challenges and Opportunities T2 - Proceedings of the 12th Innovations on Software Engineering Conference N2 - Currently, a transformation of our technical world into a networked technical world where besides the embedded systems with their interaction with the physical world the interconnection of these nodes in the cyber world becomes a reality can be observed. In parallel nowadays there is a strong trend to employ artificial intelligence techniques and in particular machine learning to make software behave smart. Often cyber-physical systems must be self-adaptive at the level of the individual systems to operate as elements in open, dynamic, and deviating overall structures and to adapt to open and dynamic contexts while being developed, operated, evolved, and governed independently. In this presentation, we will first discuss the envisioned future scenarios for cyber-physical systems with an emphasis on the synergies networking can offer and then characterize which challenges for the design, production, and operation of these systems result. We will then discuss to what extent our current capabilities, in particular concerning software engineering match these challenges and where substantial improvements for the software engineering are crucial. In today's software engineering for embedded systems models are used to plan systems upfront to maximize envisioned properties on the one hand and minimize cost on the other hand. When applying the same ideas to software for smart cyber-physical systems, it soon turned out that for these systems often somehow more subtle links between the involved models and the requirements, users, and environment exist. Self-adaptation and runtime models have been advocated as concepts to covers the demands that result from these subtler links. Lately, both trends have been brought together more thoroughly by the notion of self-aware computing systems. We will review the underlying causes, discuss some our work in this direction, and outline related open challenges and potential for future approaches to software engineering for smart cyber-physical systems. KW - Software Engineering KW - Cyber-Physical Systems KW - Self-aware computing systems Y1 - 2019 SN - 978-1-4503-6215-3 U6 - https://doi.org/10.1145/3299771.3301650 PB - Association for Computing Machinery CY - New York ER - TY - GEN A1 - Brand, Thomas A1 - Giese, Holger Burkhard T1 - Towards Generic Adaptive Monitoring T2 - 2018 IEEE 12th International Conference on Self-Adaptive and Self-Organizing Systems (SASO) N2 - Monitoring is a key prerequisite for self-adaptive software and many other forms of operating software. Monitoring relevant lower level phenomena like the occurrences of exceptions and diagnosis data requires to carefully examine which detailed information is really necessary and feasible to monitor. Adaptive monitoring permits observing a greater variety of details with less overhead, if most of the time the MAPE-K loop can operate using only a small subset of all those details. However, engineering such an adaptive monitoring is a major engineering effort on its own that further complicates the development of self-adaptive software. The proposed approach overcomes the outlined problems by providing generic adaptive monitoring via runtime models. It reduces the effort to introduce and apply adaptive monitoring by avoiding additional development effort for controlling the monitoring adaptation. Although the generic approach is independent from the monitoring purpose, it still allows for substantial savings regarding the monitoring resource consumption as demonstrated by an example. Y1 - 2019 SN - 978-1-5386-5172-8 U6 - https://doi.org/10.1109/SASO.2018.00027 SN - 1949-3673 SP - 156 EP - 161 PB - IEEE CY - New York ER - TY - GEN A1 - Giese, Holger ED - Kouchnarenko, Olga ED - Khosravi, Ramtin T1 - Formal models and analysis for self-adaptive cyber-physical systems BT - (extended abstract) T2 - Lecture notes in computer science N2 - In this extended abstract, we will analyze the current challenges for the envisioned Self-Adaptive CPS. In addition, we will outline our results to approach these challenges with SMARTSOS [10] a generic approach based on extensions of graph transformation systems employing open and adaptive collaborations and models at runtime for trustworthy self-adaptation, self-organization, and evolution of the individual systems and the system-of-systems level taking the independent development, operation, management, and evolution of these systems into account. Y1 - 2017 SN - 978-3-319-57666-4 SN - 978-3-319-57665-7 U6 - https://doi.org/10.1007/978-3-319-57666-4_1 SN - 0302-9743 SN - 1611-3349 VL - 10231 SP - 3 EP - 9 PB - Springer CY - Cham ER - TY - JOUR A1 - Schneider, Sven A1 - Maximova, Maria A1 - Sakizloglou, Lucas A1 - Giese, Holger T1 - Formal testing of timed graph transformation systems using metric temporal graph logic JF - International journal on software tools for technology transfer N2 - Embedded real-time systems generate state sequences where time elapses between state changes. Ensuring that such systems adhere to a provided specification of admissible or desired behavior is essential. Formal model-based testing is often a suitable cost-effective approach. We introduce an extended version of the formalism of symbolic graphs, which encompasses types as well as attributes, for representing states of dynamic systems. Relying on this extension of symbolic graphs, we present a novel formalism of timed graph transformation systems (TGTSs) that supports the model-based development of dynamic real-time systems at an abstract level where possible state changes and delays are specified by graph transformation rules. We then introduce an extended form of the metric temporal graph logic (MTGL) with increased expressiveness to improve the applicability of MTGL for the specification of timed graph sequences generated by a TGTS. Based on the metric temporal operators of MTGL and its built-in graph binding mechanics, we express properties on the structure and attributes of graphs as well as on the occurrence of graphs over time that are related by their inner structure. We provide formal support for checking whether a single generated timed graph sequence adheres to a provided MTGL specification. Relying on this logical foundation, we develop a testing framework for TGTSs that are specified using MTGL. Lastly, we apply this testing framework to a running example by using our prototypical implementation in the tool AutoGraph. KW - formal testing KW - typed attributed symbolic graphs KW - timed graph KW - transformation KW - graph conditions KW - metric temporal graph logic Y1 - 2021 U6 - https://doi.org/10.1007/s10009-020-00585-w SN - 1433-2779 SN - 1433-2787 VL - 23 IS - 3 SP - 411 EP - 488 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Barkowsky, Matthias A1 - Giese, Holger T1 - Hybrid search plan generation for generalized graph pattern matching JF - Journal of logical and algebraic methods in programming N2 - In recent years, the increased interest in application areas such as social networks has resulted in a rising popularity of graph-based approaches for storing and processing large amounts of interconnected data. To extract useful information from the growing network structures, efficient querying techniques are required. In this paper, we propose an approach for graph pattern matching that allows a uniform handling of arbitrary constraints over the query vertices. Our technique builds on a previously introduced matching algorithm, which takes concrete host graph information into account to dynamically adapt the employed search plan during query execution. The dynamic algorithm is combined with an existing static approach for search plan generation, resulting in a hybrid technique which we further extend by a more sophisticated handling of filtering effects caused by constraint checks. We evaluate the presented concepts empirically based on an implementation for our graph pattern matching tool, the Story Diagram Interpreter, with queries and data provided by the LDBC Social Network Benchmark. Our results suggest that the hybrid technique may improve search efficiency in several cases, and rarely reduces efficiency. KW - graph pattern matching KW - search plan generation Y1 - 2020 U6 - https://doi.org/10.1016/j.jlamp.2020.100563 SN - 2352-2208 VL - 114 PB - Elsevier CY - New York ER - TY - BOOK A1 - Giese, Holger T1 - Quo vadis, Modellierung? : Antrittsvorlesung 2008-12-11 N2 - Zum Thema "Quo vadis, Modellierung?" hält Prof. Dr. Holger Giese am 11. Dezember 2008 seine Antrittsvorlesung an der Universität Potsdam. Der Wissenschaftler bekleidet eine Professur für Systemanalyse und Modellierung. Es handelt sich um eine gemeinsame Berufung der Universität Potsdam mit dem Hasso-Plattner- Institut für Softwaresystemtechnik an der Universität Potsdam. Seit den Anfängen der Informatik vollzieht sich die Entwicklung von detaillierten, lösungsorientierten und eher technisch geprägten Modellen hin zu solchen, die immer abstrakter und eher an den Problemen beziehungsweise Anwendungsbereichen orientiert sind. Diese ermöglichen es, die Komplexität heutiger Systeme besser zu beherrschen. Der Einsatz führt in einigen Anwendungsbereichen heute schon zu bedeutend höherer Produktivität und Qualität sowie geringeren Entwicklungszeiten. Anderseits hat sich aber auch in anderen Anwendungsgebieten gezeigt, dass die ständige Anpassung der Software an sich ändernde Anforderungen oder Organisationsstrukturen dazu führt, dass in frühen Entwicklungsphasen entstandene Modelle in der Praxis oft sehr schnell nicht mehr mit der Software übereinstimmen. In seiner Antrittsvorlesung will Holger Giese diese Entwicklung Revue passieren lassen und der Frage nachgehen, was dies für die Zukunft der Modellierung bedeutet, mit welchen aktuellen Ansätzen man diesem Problem zu begegnen versucht und welche zukünftigen Entwicklungen für die Modellierung zu erwarten sind. Y1 - 2008 UR - http://info.ub.uni-potsdam.de/multimedia/show_projekt.php?projekt_id=24 PB - Univ.-Bibl. CY - Potsdam ER - TY - JOUR A1 - Giese, Holger A1 - Wagner, Robert T1 - From model transformation to incremental bidirectional model synchronization N2 - The model-driven software development paradigm requires that appropriate model transformations are applicable in different stages of the development process. The transformations have to consistently propagate changes between the different involved models and thus ensure a proper model synchronization. However, most approaches today do not fully support the requirements for model synchronization and focus only on classical one-way batch-oriented transformations. In this paper, we present our approach for an incremental model transformation which supports model synchronization. Our approach employs the visual, formal, and bidirectional transformation technique of triple graph grammars. Using this declarative specification formalism, we focus on the efficient execution of the transformation rules and how to achieve an incremental model transformation for synchronization purposes. We present an evaluation of our approach and demonstrate that due to the speedup for the incremental processing in the average case even larger models can be tackled. Y1 - 2009 UR - http://www.springerlink.com/content/109378 U6 - https://doi.org/10.1007/s10270-008-0089-9 SN - 1619-1366 ER - TY - JOUR A1 - Gabrysiak, Gregor A1 - Giese, Holger A1 - Seibel, Andreas T1 - Towards next generation design thinking : scenario-based prototyping for designing complex software systems with multiple users Y1 - 2011 SN - 978-3-642-13756-3 ER - TY - JOUR A1 - Gabrysiak, Gregor A1 - Giese, Holger A1 - Seibel, Andreas T1 - Towards next-generation design thinking II : virtual muti-user software prototypes Y1 - 2012 ER - TY - JOUR A1 - Seibel, Andreas A1 - Neumann, Stefan A1 - Giese, Holger T1 - Dynamic hierarchical mega models : comprehensive traceability and its efficient maintenance N2 - In the world of model-driven engineering (MDE) support for traceability and maintenance of traceability information is essential. On the one hand, classical traceability approaches for MDE address this need by supporting automated creation of traceability information on the model element level. On the other hand, global model management approaches manually capture traceability information on the model level. However, there is currently no approach that supports comprehensive traceability, comprising traceability information on both levels, and efficient maintenance of traceability information, which requires a high-degree of automation and scalability. In this article, we present a comprehensive traceability approach that combines classical traceability approaches for MDE and global model management in form of dynamic hierarchical mega models. We further integrate efficient maintenance of traceability information based on top of dynamic hierarchical mega models. The proposed approach is further outlined by using an industrial case study and by presenting an implementation of the concepts in form of a prototype. Y1 - 2010 UR - http://www.springerlink.com/content/109378 U6 - https://doi.org/10.1007/s10270-009-0146-z SN - 1619-1366 ER - TY - JOUR A1 - Henkler, Stefan A1 - Oberthuer, Simon A1 - Giese, Holger A1 - Seibel, Andreas T1 - Model-driven runtime resource predictions for advanced mechatronic systems with dynamic data structures JF - Computer systems science and engineering N2 - The next generation of advanced mechatronic systems is expected to enhance their functionality and improve their performance by context-dependent behavior. Therefore, these systems require to represent information about their complex environment and changing sets of collaboration partners internally. This requirement is in contrast to the usually assumed static structures of embedded systems. In this paper, we present a model-driven approach which overcomes this situation by supporting dynamic data structures while still guaranteeing that valid worst-case execution times can be derived. It supports a flexible resource manager which avoids to operate with the prohibitive coarse worst-case boundaries but instead supports to run applications in different profiles which guarantee different resource requirements and put unused resources in a profile at other applications' disposal. By supporting the proper estimation of worst case execution time (WCET) and worst case number of iteration (WCNI) at runtime, we can further support to create new profiles, add or remove them at runtime in order to minimize the over-approximation of the resource consumption resulting from the dynamic data structures required for the outlined class of advanced systems. KW - Model-Driven Engineering KW - Safety Critical Systems KW - Dynamic Data Structures KW - Flexible Resource Manager KW - Runtime WCET Analysis Y1 - 2011 SN - 0267-6192 VL - 26 IS - 6 SP - 505 EP - 518 PB - IOP Publ. Ltd. CY - Leicester ER - TY - JOUR A1 - Giese, Holger A1 - Hildebrandt, Stephan A1 - Lambers, Leen T1 - Bridging the gap between formal semantics and implementation of triple graph grammars JF - Software and systems modeling N2 - The correctness of model transformations is a crucial element for model-driven engineering of high-quality software. A prerequisite to verify model transformations at the level of the model transformation specification is that an unambiguous formal semantics exists and that the implementation of the model transformation language adheres to this semantics. However, for existing relational model transformation approaches, it is usually not really clear under which constraints particular implementations really conform to the formal semantics. In this paper, we will bridge this gap for the formal semantics of triple graph grammars (TGG) and an existing efficient implementation. While the formal semantics assumes backtracking and ignores non-determinism, practical implementations do not support backtracking, require rule sets that ensure determinism, and include further optimizations. Therefore, we capture how the considered TGG implementation realizes the transformation by means of operational rules, define required criteria, and show conformance to the formal semantics if these criteria are fulfilled. We further outline how static and runtime checks can be employed to guarantee these criteria. Y1 - 2014 U6 - https://doi.org/10.1007/s10270-012-0247-y SN - 1619-1366 SN - 1619-1374 VL - 13 IS - 1 SP - 273 EP - 299 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Giese, Holger A1 - Henkler, Stefan A1 - Hirsch, Martin T1 - A multi-paradigm approach supporting the modular execution of reconfigurable hybrid systems JF - Simulation : transactions of the Society for Modeling and Simulation International N2 - Advanced mechatronic systems have to integrate existing technologies from mechanical, electrical and software engineering. They must be able to adapt their structure and behavior at runtime by reconfiguration to react flexibly to changes in the environment. Therefore, a tight integration of structural and behavioral models of the different domains is required. This integration results in complex reconfigurable hybrid systems, the execution logic of which cannot be addressed directly with existing standard modeling, simulation, and code-generation techniques. We present in this paper how our component-based approach for reconfigurable mechatronic systems, MECHATRONIC UML, efficiently handles the complex interplay of discrete behavior and continuous behavior in a modular manner. In addition, its extension to even more flexible reconfiguration cases is presented. KW - code generation KW - hybrid systems KW - reconfigurable systems KW - simulation Y1 - 2011 U6 - https://doi.org/10.1177/0037549710366824 SN - 0037-5497 VL - 87 IS - 9 SP - 775 EP - 808 PB - Sage Publ. CY - London ER - TY - JOUR A1 - Vogel, Thomas A1 - Giese, Holger T1 - Model-Driven engineering of self-adaptive software with EUREMA JF - ACM transactions on autonomous and adaptive systems N2 - The development of self-adaptive software requires the engineering of an adaptation engine that controls the underlying adaptable software by feedback loops. The engine often describes the adaptation by runtime models representing the adaptable software and by activities such as analysis and planning that use these models. To systematically address the interplay between runtime models and adaptation activities, runtime megamodels have been proposed. A runtime megamodel is a specific model capturing runtime models and adaptation activities. In this article, we go one step further and present an executable modeling language for ExecUtable RuntimE MegAmodels (EUREMA) that eases the development of adaptation engines by following a model-driven engineering approach. We provide a domain-specific modeling language and a runtime interpreter for adaptation engines, in particular feedback loops. Megamodels are kept alive at runtime and by interpreting them, they are directly executed to run feedback loops. Additionally, they can be dynamically adjusted to adapt feedback loops. Thus, EUREMA supports development by making feedback loops explicit at a higher level of abstraction and it enables solutions where multiple feedback loops interact or operate on top of each other and self-adaptation co-exists with offline adaptation for evolution. KW - Design KW - Languages Model-driven engineering KW - modeling language KW - models at runtime KW - model interpreter KW - self-adaptive software KW - feedback loops KW - layered architecture KW - software evolution Y1 - 2014 U6 - https://doi.org/10.1145/2555612 SN - 1556-4665 SN - 1556-4703 VL - 8 IS - 4 PB - Association for Computing Machinery CY - New York ER - TY - BOOK A1 - Becker, Basil A1 - Giese, Holger T1 - Cyber-physical systems with dynamic structure : towards modeling and verification of inductive invariants N2 - Cyber-physical systems achieve sophisticated system behavior exploring the tight interconnection of physical coupling present in classical engineering systems and information technology based coupling. A particular challenging case are systems where these cyber-physical systems are formed ad hoc according to the specific local topology, the available networking capabilities, and the goals and constraints of the subsystems captured by the information processing part. In this paper we present a formalism that permits to model the sketched class of cyber-physical systems. The ad hoc formation of tightly coupled subsystems of arbitrary size are specified using a UML-based graph transformation system approach. Differential equations are employed to define the resulting tightly coupled behavior. Together, both form hybrid graph transformation systems where the graph transformation rules define the discrete steps where the topology or modes may change, while the differential equations capture the continuous behavior in between such discrete changes. In addition, we demonstrate that automated analysis techniques known for timed graph transformation systems for inductive invariants can be extended to also cover the hybrid case for an expressive case of hybrid models where the formed tightly coupled subsystems are restricted to smaller local networks. N2 - Cyber-physical Systeme erzielen ihr ausgefeiltes Systemverhalten durch die enge Verschränkung von physikalischer Kopplung, wie sie in Systemen der klassichen Igenieurs-Disziplinen vorkommt, und der Kopplung durch Informationstechnologie. Eine besondere Herausforderung stellen in diesem Zusammenhang Systeme dar, die durch die spontane Vernetzung einzelner Cyber-Physical-Systeme entsprechend der lokalen, topologischen Gegebenheiten, verfügbarer Netzwerkfähigkeiten und der Anforderungen und Beschränkungen der Teilsysteme, die durch den informationsverabeitenden Teil vorgegeben sind, entstehen. In diesem Bericht stellen wir einen Formalismus vor, der die Modellierung der eingangs skizzierten Systeme erlaubt. Ein auf UML aufbauender Graph-Transformations-Ansatz wird genutzt, um die spontane Bildung eng kooperierender Teilsysteme beliebiger Größe zu spezifizieren. Differentialgleichungen beschreiben das kombinierte Verhalten auf physikalischer Ebene. In Kombination ergeben diese beiden Formalismen hybride Graph-Transformations-Systeme, in denen die Graph-Transformationen diskrete Schritte und die Differentialgleichungen das kontinuierliche, physikalische Verhalten des Systems beschreiben. Zusätzlich, präsentieren wir die Erweiterung einer automatischen Analysetechnik zur Verifikation induktiver Invarianten, die bereits für zeitbehaftete Systeme bekannt ist, auf den ausdrucksstärkeren Fall der hybriden Modelle. T3 - Technische Berichte des Hasso-Plattner-Instituts für Digital Engineering an der Universität Potsdam - 64 KW - Cyber-Physical-Systeme KW - Verifikation KW - Modellierung KW - hybride Graph-Transformations-Systeme KW - Cyber-physical-systems KW - verification KW - modeling KW - hybrid graph-transformation-systems Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-62437 SN - 978-3-86956-217-9 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - BOOK A1 - Hebig, Regina A1 - Giese, Holger T1 - MDE settings in SAP : a descriptive field study N2 - MDE techniques are more and more used in praxis. However, there is currently a lack of detailed reports about how different MDE techniques are integrated into the development and combined with each other. To learn more about such MDE settings, we performed a descriptive and exploratory field study with SAP, which is a worldwide operating company with around 50.000 employees and builds enterprise software applications. This technical report describes insights we got during this study. For example, we identified that MDE settings are subject to evolution. Finally, this report outlines directions for future research to provide practical advises for the application of MDE settings. N2 - Techniken der modellgetriebenen Entwicklung (MDE) werden mehr und mehr in der Praxis eingesetzt. Dabei gibt es wenige detaillierte Berichte darüber wie unterschiedliche MDE-Techniken kombiniert und in die Entwicklung integriert werden. Die vorliegende beschreibende Feldstudie dient dem Zweck, in SAP genutzte MDE-Ansätze detailliert zu beschreiben. SAP ist ein weltweit operierendes Unternehmen, hat ca. 50 000 Mitarbeiter und stellt Softwarelösungen für Firmen her. Der vorliegende technische Bericht beschreibt die Einblicke die wir in dieser Studie erhalten haben. Dazu gehört die Einsicht, dass MDE Ansätze einer Evolution unterliegen. Schließlich umreißt dieser Bericht mögliche Richtungen für zukünftige Forschung um praktische Ratschläge für die Gestaltung von MDE Ansätzen geben zu können. T3 - Technische Berichte des Hasso-Plattner-Instituts für Digital Engineering an der Universität Potsdam - 58 KW - Model Transformation KW - Model Synchronisation KW - SysML KW - AUTOSAR KW - Tripel-Graph-Grammatik KW - modellgetriebene Entwicklung KW - beschreibende Feldstudie Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-60193 SN - 978-3-86956-192-9 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - JOUR A1 - Beyhl, Thomas A1 - Giese, Holger T1 - Incremental View Maintenance for Deductive Graph Databases Using Generalized Discrimination Networks JF - Electronic proceedings in theoretical computer science N2 - Nowadays, graph databases are employed when relationships between entities are in the scope of database queries to avoid performance-critical join operations of relational databases. Graph queries are used to query and modify graphs stored in graph databases. Graph queries employ graph pattern matching that is NP-complete for subgraph isomorphism. Graph database views can be employed that keep ready answers in terms of precalculated graph pattern matches for often stated and complex graph queries to increase query performance. However, such graph database views must be kept consistent with the graphs stored in the graph database. In this paper, we describe how to use incremental graph pattern matching as technique for maintaining graph database views. We present an incremental maintenance algorithm for graph database views, which works for imperatively and declaratively specified graph queries. The evaluation shows that our maintenance algorithm scales when the number of nodes and edges stored in the graph database increases. Furthermore, our evaluation shows that our approach can outperform existing approaches for the incremental maintenance of graph query results. Y1 - 2016 U6 - https://doi.org/10.4204/EPTCS.231.5 SN - 2075-2180 VL - 10 SP - 57 EP - 71 PB - Open Publishing Association CY - Sydney ER - TY - BOOK A1 - Wätzoldt, Sebastian A1 - Giese, Holger T1 - Modeling collaborations in self-adaptive systems of systems BT - terms, characteristics, requirements, and scenarios N2 - An increasing demand on functionality and flexibility leads to an integration of beforehand isolated system solutions building a so-called System of Systems (SoS). Furthermore, the overall SoS should be adaptive to react on changing requirements and environmental conditions. Due SoS are composed of different independent systems that may join or leave the overall SoS at arbitrary point in times, the SoS structure varies during the systems lifetime and the overall SoS behavior emerges from the capabilities of the contained subsystems. In such complex system ensembles new demands of understanding the interaction among subsystems, the coupling of shared system knowledge and the influence of local adaptation strategies to the overall resulting system behavior arise. In this report, we formulate research questions with the focus of modeling interactions between system parts inside a SoS. Furthermore, we define our notion of important system types and terms by retrieving the current state of the art from literature. Having a common understanding of SoS, we discuss a set of typical SoS characteristics and derive general requirements for a collaboration modeling language. Additionally, we retrieve a broad spectrum of real scenarios and frameworks from literature and discuss how these scenarios cope with different characteristics of SoS. Finally, we discuss the state of the art for existing modeling languages that cope with collaborations for different system types such as SoS. N2 - Steigende Anforderungen zum Funktionsumfang und der Flexibilität von Systemen führt zur Integration von zuvor isolierten Systemlösungen zu sogenannten System of Systems (SoS). Weiterhin sollten solche SoS adaptive Eigenschaften aufweisen, die es ihm ermöglichen auf sich ändernde Anforderungen und Umwelteinflüsse zu reagieren. Weil SoS aus unterschiedlichen, unabhängigen Subsystemen zusammengesetzt sind, die wiederum das übergeordnete SoS zu beliebigen Zeitpunkten erweitern oder verlassen können, ist das SoS durch eine variable Systemstruktur gekennzeichnet. Weiterhin definieren sich der Funktionsumfang des SoS und dessen Potenzial aus den enthaltenen Subsystemen. Solche komplexen Systemzusammenstellungen erfordern neue Untersuchungstechniken, um die Interaktion der einzelnen Subsysteme, die Kopplung von geteilten Daten und den Einfluss von lokalen Adaptionsstrategien auf das Gesamtsystem besser verstehen zu können. In diesem Bericht formulieren wir aktuelle Forschungsfragen mit dem Fokus auf der Modellierung von Interaktionen zwischen verschiedenen Systemteilen innerhalt eines SoS. Weiterhin definieren wir wichtige Systemtypen und Begriffe aus diesem Bereich durch das Zusammentragen aktueller Literatur. Nachdem wir ein gemeinsames Verständnis über SoS geschaffen haben, leiten wir typische SoS Eigenschaften und allgemeine Anforderungen für eine Modellierungssprache für Kollaborationen ab. Zusätzlich führen wir eine Literaturstudie durch, in der wir ein breites Spektrum von realen Szenarios und existierenden Frameworks zusammentragen, an denen wir die aufgezeigten SoS Eigenschaften diskutieren. Abschließend beschreiben wir den Stand der Wissenschaft bezüglich existierender Modellierungssprachen, die sich mit Kollaborationen in verschiedenen Arten von Systemen, wie SoS, beschäftigen. T3 - Technische Berichte des Hasso-Plattner-Instituts für Digital Engineering an der Universität Potsdam - 96 KW - modeling KW - collaboration KW - system of systems KW - cyber-physical systems KW - feedback loops KW - adaptive systems KW - Modellierung KW - Kollaborationen KW - System of Systems KW - Cyber-Physical Systems KW - Feedback Loops KW - adaptive Systeme Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-73036 SN - 978-3-86956-324-4 SN - 1613-5652 SN - 2191-1665 IS - 96 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - JOUR A1 - Hebig, Regina A1 - Giese, Holger T1 - On the complex nature of MDE evolution and its impact on changeability JF - Software and systems modeling KW - Model-driven engineering KW - Evolution KW - Empirical research Y1 - 2017 U6 - https://doi.org/10.1007/s10270-015-0464-2 SN - 1619-1366 SN - 1619-1374 VL - 16 SP - 333 EP - 356 PB - Springer CY - Heidelberg ER - TY - BOOK A1 - Becker, Basil A1 - Giese, Holger A1 - Neumann, Stefan T1 - Correct dynamic service-oriented architectures : modeling and compositional verification with dynamic collaborations N2 - Service-oriented modeling employs collaborations to capture the coordination of multiple roles in form of service contracts. In case of dynamic collaborations the roles may join and leave the collaboration at runtime and therefore complex structural dynamics can result, which makes it very hard to ensure their correct and safe operation. We present in this paper our approach for modeling and verifying such dynamic collaborations. Modeling is supported using a well-defined subset of UML class diagrams, behavioral rules for the structural dynamics, and UML state machines for the role behavior. To be also able to verify the resulting service-oriented systems, we extended our former results for the automated verification of systems with structural dynamics [7, 8] and developed a compositional reasoning scheme, which enables the reuse of verification results. We outline our approach using the example of autonomous vehicles that use such dynamic collaborations via ad-hoc networking to coordinate and optimize their joint behavior. N2 - Bei der Modellierung Service-orientierter Systeme werden Kollaborationen verwendet, um die Koordination mehrerer Rollen durch Service-Verträge zu beschreiben. Dynamische Kollaborationen erlauben ein Hinzufügen und Entfernen von Rollen zur Kollaboration zur Laufzeit, wodurch eine komplexe strukturelle Dynamik entstehen kann. Die automatische Analyse service-orientierter Systeme wird durch diese erheblich erschwert. In dieser Arbeit stellen wir einen Ansatz zur Modellierung und Verifikation solcher dynamischer Kollaborationen vor. Eine spezielle Untermenge der UML ermöglicht die Modellierung, wobei Klassendiagramme, Verhaltensregeln für die strukturelle Dynamik und UML Zustandsdiagramme für das Verhalten der Rollen verwendet werden. Um die Verifikation der so modellierten service-orientierten Systeme zu ermöglichen, erweiterten wir unsere früheren Ergebnisse zur Verifikation von Systemen mit struktureller Dynamik [7,8] und entwickelten einen kompositionalen Verifikationsansatz. Der entwickelte Verifikationsansatz erlaubt es Ergebnisse wiederzuverwenden. Die entwickelten Techniken werden anhand autonomer Fahrzeuge, die dynamische Kollaborationen über ad-hoc Netzwerke zur Koordination und Optimierung ihres gemeinsamen Verhaltens nutzen, exemplarisch vorgestellt. T3 - Technische Berichte des Hasso-Plattner-Instituts für Digital Engineering an der Universität Potsdam - 29 Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-30473 SN - 978-3-940793-91-1 ER - TY - GEN A1 - Giese, Holger A1 - Henkler, Stefan A1 - Hirsch, Martin T1 - A multi-paradigm approach supporting the modular execution of reconfigurable hybrid systems N2 - Advanced mechatronic systems have to integrate existing technologies from mechanical, electrical and software engineering. They must be able to adapt their structure and behavior at runtime by reconfiguration to react flexibly to changes in the environment. Therefore, a tight integration of structural and behavioral models of the different domains is required. This integration results in complex reconfigurable hybrid systems, the execution logic of which cannot be addressed directly with existing standard modeling, simulation, and code-generation techniques. We present in this paper how our component-based approach for reconfigurable mechatronic systems, M ECHATRONIC UML, efficiently handles the complex interplay of discrete behavior and continuous behavior in a modular manner. In addition, its extension to even more flexible reconfiguration cases is presented. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 410 KW - code generation KW - hybrid systems KW - reconfigurable systems KW - simulation Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-402896 ER - TY - BOOK A1 - Giese, Holger A1 - Hildebrandt, Stephan A1 - Lambers, Leen T1 - Toward bridging the gap between formal semantics and implementation of triple graph grammars N2 - The correctness of model transformations is a crucial element for the model-driven engineering of high quality software. A prerequisite to verify model transformations at the level of the model transformation specification is that an unambiguous formal semantics exists and that the employed implementation of the model transformation language adheres to this semantics. However, for existing relational model transformation approaches it is usually not really clear under which constraints particular implementations are really conform to the formal semantics. In this paper, we will bridge this gap for the formal semantics of triple graph grammars (TGG) and an existing efficient implementation. Whereas the formal semantics assumes backtracking and ignores non-determinism, practical implementations do not support backtracking, require rule sets that ensure determinism, and include further optimizations. Therefore, we capture how the considered TGG implementation realizes the transformation by means of operational rules, define required criteria and show conformance to the formal semantics if these criteria are fulfilled. We further outline how static analysis can be employed to guarantee these criteria. T3 - Technische Berichte des Hasso-Plattner-Instituts für Digital Engineering an der Universität Potsdam - 37 Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-45219 SN - 978-3-86956-078-6 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - BOOK A1 - Giese, Holger A1 - Hildebrandt, Stephan T1 - Efficient model synchronization of large-scale models N2 - Model-driven software development requires techniques to consistently propagate modifications between different related models to realize its full potential. For large-scale models, efficiency is essential in this respect. In this paper, we present an improved model synchronization algorithm based on triple graph grammars that is highly efficient and, therefore, can also synchronize large-scale models sufficiently fast. We can show, that the overall algorithm has optimal complexity if it is dominating the rule matching and further present extensive measurements that show the efficiency of the presented model transformation and synchronization technique. N2 - Die Model-getriebene Softwareentwicklung benötigt Techniken zur Übertragung von Änderungen zwischen verschiedenen zusammenhängenden Modellen, um vollständig nutzbar zu sein. Bei großen Modellen spielt hier die Effizienz eine entscheidende Rolle. In diesem Bericht stellen wir einen verbesserten Modellsynchronisationsalgorithmus vor, der auf Tripel-Graph-Grammatiken basiert. Dieser arbeitet sehr effizient und kann auch sehr große Modelle schnell synchronisieren. Wir können zeigen, dass der Gesamtalgortihmus eine optimale Komplexität aufweist, sofern er die Ausführung dominiert. Die Effizient des Algorithmus' wird durch einige Benchmarkergebnisse belegt. T3 - Technische Berichte des Hasso-Plattner-Instituts für Digital Engineering an der Universität Potsdam - 28 KW - Model Transformation KW - Model Synchronisation KW - Tripel-Graph-Grammatik KW - Modell-getriebene Softwareentwicklung KW - Model Transformation KW - Model Synchronization KW - Triple Graph Grammars KW - Model-Driven Engineering Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-29281 SN - 978-3-940793-84-3 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - BOOK A1 - Barkowsky, Matthias A1 - Giese, Holger T1 - Modular and incremental global model management with extended generalized discrimination networks T1 - Modulares und inkrementelles Globales Modellmanagement mit erweiterten Generalized Discrimination Networks N2 - Complex projects developed under the model-driven engineering paradigm nowadays often involve several interrelated models, which are automatically processed via a multitude of model operations. Modular and incremental construction and execution of such networks of models and model operations are required to accommodate efficient development with potentially large-scale models. The underlying problem is also called Global Model Management. In this report, we propose an approach to modular and incremental Global Model Management via an extension to the existing technique of Generalized Discrimination Networks (GDNs). In addition to further generalizing the notion of query operations employed in GDNs, we adapt the previously query-only mechanism to operations with side effects to integrate model transformation and model synchronization. We provide incremental algorithms for the execution of the resulting extended Generalized Discrimination Networks (eGDNs), as well as a prototypical implementation for a number of example eGDN operations. Based on this prototypical implementation, we experiment with an application scenario from the software development domain to empirically evaluate our approach with respect to scalability and conceptually demonstrate its applicability in a typical scenario. Initial results confirm that the presented approach can indeed be employed to realize efficient Global Model Management in the considered scenario. N2 - Komplexe Projekte, die unter dem Paradigma der modellgetriebenen Entwicklung entwickelt werden, nutzen heutzutage oft mehrere miteinander in Beziehung stehende Modelle, die durch eine Vielzahl von Modelloperationen automatiscsh verarbeitet werden. Die modulare und inkrementelle Konstruktion und Ausführung solcher Netzwerke von Modelloperationen ist eine Voraussetzung für effiziente Entwicklung mit potenziell sehr großen Modellen. Das zugrunde liegende Forschungsproblem heißt auch Globales Modellmanagement. In diesem Bericht schlagen wir einen Ansatz für modulares und inkrementelles Globales Modellmanagement vor, der auf einer Erweiterung der existierenden Technik der Generalized Discrimination Networks (GDNs) basiert. Neben einer weiteren Verallgemeinerung des Konzepts der Anfrageoperationen in GDNs erweitern wir den zuvor rein lesenden Mechanismus auf Operationen mit Seiteneffekten, um Modelltransformationen und Modellsynchronisationen zu integrieren. Wir präsentieren inkrementelle Algorithmen für die Ausführung der resultierenden erweiterten GDNs (eGDNs) sowie eine prototypische Implementierung von Beispieloperationen für eGDNs. Mithilfe dieser prototypischen Implementierung evaluieren wir unsere Lösung hinsichtlich ihrer Skalierbarkeit in einem Anwendungsszenario aus dem Bereich der Softwareentwicklung. Außerdem demonstrieren wir die Anwendbarkeit der entwickelten Technik konzeptionell anhand eines typischen Anwendugsszenario. Unsere ersten Ergebnisse bestätigen, dass die Lösung genutzt werden kann, um effizientes Globales Modellmanagement im betrachteten Szenario zu realisieren. T3 - Technische Berichte des Hasso-Plattner-Instituts für Digital Engineering an der Universität Potsdam - 154 KW - global model management KW - generalized discrimination networks KW - globales Modellmanagement KW - Generalized Discrimination Networks Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-573965 SN - 978-3-86956-555-2 SN - 1613-5652 SN - 2191-1665 IS - 154 SP - 63 EP - 63 ER - TY - BOOK A1 - Giese, Holger A1 - Becker, Basil T1 - Modeling and verifying dynamic evolving service-oriented architectures N2 - The service-oriented architecture supports the dynamic assembly and runtime reconfiguration of complex open IT landscapes by means of runtime binding of service contracts, launching of new components and termination of outdated ones. Furthermore, the evolution of these IT landscapes is not restricted to exchanging components with other ones using the same service contracts, as new services contracts can be added as well. However, current approaches for modeling and verification of service-oriented architectures do not support these important capabilities to their full extend.In this report we present an extension of the current OMG proposal for service modeling with UML - SoaML - which overcomes these limitations. It permits modeling services and their service contracts at different levels of abstraction, provides a formal semantics for all modeling concepts, and enables verifying critical properties. Our compositional and incremental verification approach allows for complex properties including communication parameters and time and covers besides the dynamic binding of service contracts and the replacement of components also the evolution of the systems by means of new service contracts. The modeling as well as verification capabilities of the presented approach are demonstrated by means of a supply chain example and the verification results of a first prototype are shown. N2 - Service-Orientierte Architekturen erlauben die dynamische Zusammensetzung und Rekonfiguration komplexer, offener IT Landschaften durch Bindung von Service Contracts zur Laufzeit, starten neuer Komponenten und beenden von veralteten. Die Evolution dieser Systeme ist nicht auf den Austausch von Komponenten-Implementierungen bei Beibehaltung der Service-Contracts beschränkt, sondern das Hinzufügen neuer Service-Contracts wird ebenfalls unterstützt. Aktuelle Ansätze zur Modellierung und Verifikation Service-Orientierter Architekturen unterstützen diese wichtigen Eigenschaften, wenn überhaupt, nur unvollständig. In diesem Bericht stellen wir eine Erweiterung des aktuellen OMG Vorschlags zur Service Modellierung mit UML - SoaML - vor, die diese Einschränkungen aufhebt. Unser Ansatz erlaubt die Modellierung von Service Contracts auf verschiedenen Abstraktionsniveaus, besitzt eine fundierte formale Semantik für alle eingeführten Modellierungskonzepte und erlaubt die Verifikation kritischer Eigenschaften. Unser kompositionaler und inkrementeller Verifikationsansatz erlaubt die Verifikation komplexer Eigenschaften einschließlich Kommunikationsparameter und Zeit und deckt neben der dynamischen Bindung von Service Contracts sowie dem Austausch von Komponenten auch die Evolution des gesamten Systems durch das Hinzufügen neuer Service Contracts ab. Die Modellierungs- als auch die Verifikationsfähigkeiten unseres vorgestellten Ansatzes werden durch ein Anwendungsbeispiel aus dem Bereich des Lieferkettenmanagements veranschaulicht. T3 - Technische Berichte des Hasso-Plattner-Instituts für Digital Engineering an der Universität Potsdam - 75 KW - Service-Orientierte Architekturen KW - Verifikation KW - Contracts KW - Evolution KW - Unbegrenzter Zustandsraum KW - Invarianten KW - Modellierung KW - SoaML KW - Service-Oriented Architecture KW - Verification KW - Contracts KW - Evolution KW - Infinite State KW - Invariants KW - Modeling KW - SoaML KW - Runtime Binding Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-65112 SN - 978-3-86956-246-9 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - BOOK A1 - Vogel, Thomas A1 - Giese, Holger T1 - Model-driven engineering of adaptation engines for self-adaptive software : executable runtime megamodels N2 - The development of self-adaptive software requires the engineering of an adaptation engine that controls and adapts the underlying adaptable software by means of feedback loops. The adaptation engine often describes the adaptation by using runtime models representing relevant aspects of the adaptable software and particular activities such as analysis and planning that operate on these runtime models. To systematically address the interplay between runtime models and adaptation activities in adaptation engines, runtime megamodels have been proposed for self-adaptive software. A runtime megamodel is a specific runtime model whose elements are runtime models and adaptation activities. Thus, a megamodel captures the interplay between multiple models and between models and activities as well as the activation of the activities. In this article, we go one step further and present a modeling language for ExecUtable RuntimE MegAmodels (EUREMA) that considerably eases the development of adaptation engines by following a model-driven engineering approach. We provide a domain-specific modeling language and a runtime interpreter for adaptation engines, in particular for feedback loops. Megamodels are kept explicit and alive at runtime and by interpreting them, they are directly executed to run feedback loops. Additionally, they can be dynamically adjusted to adapt feedback loops. Thus, EUREMA supports development by making feedback loops, their runtime models, and adaptation activities explicit at a higher level of abstraction. Moreover, it enables complex solutions where multiple feedback loops interact or even operate on top of each other. Finally, it leverages the co-existence of self-adaptation and off-line adaptation for evolution. N2 - Die Entwicklung selbst-adaptiver Software erfordert die Konstruktion einer sogenannten "Adaptation Engine", die mittels Feedbackschleifen die unterliegende Software steuert und anpasst. Die Anpassung selbst wird häufig mittels Laufzeitmodellen, die die laufende Software repräsentieren, und Aktivitäten wie beispielsweise Analyse und Planung, die diese Laufzeitmodelle nutzen, beschrieben. Um das Zusammenspiel zwischen Laufzeitmodellen und Aktivitäten systematisch zu erfassen, wurden Megamodelle zur Laufzeit für selbst-adaptive Software vorgeschlagen. Ein Megamodell zur Laufzeit ist ein spezielles Laufzeitmodell, dessen Elemente Aktivitäten und andere Laufzeitmodelle sind. Folglich erfasst ein Megamodell das Zusammenspiel zwischen verschiedenen Laufzeitmodellen und zwischen Aktivitäten und Laufzeitmodellen als auch die Aktivierung und Ausführung der Aktivitäten. Darauf aufbauend präsentieren wir in diesem Artikel eine Modellierungssprache für ausführbare Megamodelle zur Laufzeit, EUREMA genannt, die aufgrund eines modellgetriebenen Ansatzes die Entwicklung selbst-adaptiver Software erleichtert. Der Ansatz umfasst eine domänen-spezifische Modellierungssprache und einen Laufzeit-Interpreter für Adaptation Engines, insbesondere für Feedbackschleifen. EUREMA Megamodelle werden über die Spezifikationsphase hinaus explizit zur Laufzeit genutzt, um mittels Interpreter Feedbackschleifen direkt auszuführen. Zusätzlich können Megamodelle zur Laufzeit dynamisch geändert werden, um Feedbackschleifen anzupassen. Daher unterstützt EUREMA die Entwicklung selbst-adaptiver Software durch die explizite Spezifikation von Feedbackschleifen, der verwendeten Laufzeitmodelle, und Adaptionsaktivitäten auf einer höheren Abstraktionsebene. Darüber hinaus ermöglicht EUREMA komplexe Lösungskonzepte, die mehrere Feedbackschleifen und deren Interaktion wie auch die hierarchische Komposition von Feedbackschleifen umfassen. Dies unterstützt schließlich das integrierte Zusammenspiel von Selbst-Adaption und Wartung für die Evolution der Software. T3 - Technische Berichte des Hasso-Plattner-Instituts für Digital Engineering an der Universität Potsdam - 66 KW - Modellgetriebene Softwareentwicklung KW - Modellierungssprachen KW - Modellierung KW - Laufzeitmodelle KW - Megamodell KW - Ausführung von Modellen KW - Model-Driven Engineering KW - Modeling Languages KW - Modeling KW - Models at Runtime KW - Megamodels KW - Model Execution KW - Self-Adaptive Software Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-63825 SN - 978-3-86956-227-8 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - BOOK A1 - Beyhl, Thomas A1 - Blouin, Dominique A1 - Giese, Holger A1 - Lambers, Leen T1 - On the operationalization of graph queries with generalized discrimination networks N2 - Graph queries have lately gained increased interest due to application areas such as social networks, biological networks, or model queries. For the relational database case the relational algebra and generalized discrimination networks have been studied to find appropriate decompositions into subqueries and ordering of these subqueries for query evaluation or incremental updates of query results. For graph database queries however there is no formal underpinning yet that allows us to find such suitable operationalizations. Consequently, we suggest a simple operational concept for the decomposition of arbitrary complex queries into simpler subqueries and the ordering of these subqueries in form of generalized discrimination networks for graph queries inspired by the relational case. The approach employs graph transformation rules for the nodes of the network and thus we can employ the underlying theory. We further show that the proposed generalized discrimination networks have the same expressive power as nested graph conditions. N2 - Graph-basierte Suchanfragen erfahren in jüngster Zeit ein zunehmendes Interesse durch Anwendungsdomänen wie zum Beispiel Soziale Netzwerke, biologische Netzwerke und Softwaremodelle. Für relationale Datenbanken wurden die relationale Algebra und sogenannte generalisierte Discrimination Networks bereits studiert um Suchanfragen angemessen in kleinere Suchanfragen für die inkrementelle Auswertung zu zerlegen und zu ordnen. Allerdings gibt es für Graphdatenbanken derzeit keine formale Grundlage, die es erlaubt solche Zerlegungen zu finden. Daher schlagen wir ein Konzept für die Zerlegung und Ordnung von komplexen Suchanfragen vor. Das Konzept basiert auf generalisierten Discrimination Networks, die aus relationalen Datenbanken bekannt sind. Der Ansatz verwendet Graphtransformationsregeln für Knoten in diesen Netzwerken, sodass die Theorie von Graphen und Graphtransformationen angewendet werden kann. Darüber hinaus zeigen wir auf, dass diese Discrimination Networks die gleiche Ausdrucksstärke besitzen wie Nested Graph Conditions. T3 - Technische Berichte des Hasso-Plattner-Instituts für Digital Engineering an der Universität Potsdam - 106 KW - graph queries KW - discrimination networks KW - incremental graph pattern matching KW - nested graph conditions KW - Graph-basierte Suche KW - Discrimination Networks KW - Inkrementelle Graphmustersuche KW - Nested Graph Conditions Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-96279 SN - 978-3-86956-372-5 SN - 1613-5652 SN - 2191-1665 IS - 106 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - BOOK A1 - Meinel, Christoph A1 - Plattner, Hasso A1 - Döllner, Jürgen Roland Friedrich A1 - Weske, Mathias A1 - Polze, Andreas A1 - Hirschfeld, Robert A1 - Naumann, Felix A1 - Giese, Holger A1 - Baudisch, Patrick T1 - Proceedings of the 7th Ph.D. Retreat of the HPI Research School on Service-oriented Systems Engineering N2 - Design and Implementation of service-oriented architectures imposes a huge number of research questions from the fields of software engineering, system analysis and modeling, adaptability, and application integration. Component orientation and web services are two approaches for design and realization of complex web-based system. Both approaches allow for dynamic application adaptation as well as integration of enterprise application. Commonly used technologies, such as J2EE and .NET, form de facto standards for the realization of complex distributed systems. Evolution of component systems has lead to web services and service-based architectures. This has been manifested in a multitude of industry standards and initiatives such as XML, WSDL UDDI, SOAP, etc. All these achievements lead to a new and promising paradigm in IT systems engineering which proposes to design complex software solutions as collaboration of contractually defined software services. Service-Oriented Systems Engineering represents a symbiosis of best practices in object-orientation, component-based development, distributed computing, and business process management. It provides integration of business and IT concerns. The annual Ph.D. Retreat of the Research School provides each member the opportunity to present his/her current state of their research and to give an outline of a prospective Ph.D. thesis. Due to the interdisciplinary structure of the Research Scholl, this technical report covers a wide range of research topics. These include but are not limited to: Self-Adaptive Service-Oriented Systems, Operating System Support for Service-Oriented Systems, Architecture and Modeling of Service-Oriented Systems, Adaptive Process Management, Services Composition and Workflow Planning, Security Engineering of Service-Based IT Systems, Quantitative Analysis and Optimization of Service-Oriented Systems, Service-Oriented Systems in 3D Computer Graphics sowie Service-Oriented Geoinformatics. N2 - Der Entwurf und die Realisierung dienstbasierender Architekturen wirft eine Vielzahl von Forschungsfragestellungen aus den Gebieten der Softwaretechnik, der Systemmodellierung und -analyse, sowie der Adaptierbarkeit und Integration von Applikationen auf. Komponentenorientierung und WebServices sind zwei Ansätze für den effizienten Entwurf und die Realisierung komplexer Web-basierender Systeme. Sie ermöglichen die Reaktion auf wechselnde Anforderungen ebenso, wie die Integration großer komplexer Softwaresysteme. Heute übliche Technologien, wie J2EE und .NET, sind de facto Standards für die Entwicklung großer verteilter Systeme. Die Evolution solcher Komponentensysteme führt über WebServices zu dienstbasierenden Architekturen. Dies manifestiert sich in einer Vielzahl von Industriestandards und Initiativen wie XML, WSDL, UDDI, SOAP. All diese Schritte führen letztlich zu einem neuen, vielversprechenden Paradigma für IT Systeme, nach dem komplexe Softwarelösungen durch die Integration vertraglich vereinbarter Software-Dienste aufgebaut werden sollen. "Service-Oriented Systems Engineering" repräsentiert die Symbiose bewährter Praktiken aus den Gebieten der Objektorientierung, der Komponentenprogrammierung, des verteilten Rechnen sowie der Geschäftsprozesse und berücksichtigt auch die Integration von Geschäftsanliegen und Informationstechnologien. Die Klausurtagung des Forschungskollegs "Service-oriented Systems Engineering" findet einmal jährlich statt und bietet allen Kollegiaten die Möglichkeit den Stand ihrer aktuellen Forschung darzulegen. Bedingt durch die Querschnittstruktur des Kollegs deckt dieser Bericht ein große Bandbreite aktueller Forschungsthemen ab. Dazu zählen unter anderem Self-Adaptive Service-Oriented Systems, Operating System Support for Service-Oriented Systems, Architecture and Modeling of Service-Oriented Systems, Adaptive Process Management, Services Composition and Workflow Planning, Security Engineering of Service-Based IT Systems, Quantitative Analysis and Optimization of Service-Oriented Systems, Service-Oriented Systems in 3D Computer Graphics sowie Service-Oriented Geoinformatics. T3 - Technische Berichte des Hasso-Plattner-Instituts für Digital Engineering an der Universität Potsdam - 83 KW - Hasso-Plattner-Institut KW - Forschungskolleg KW - Klausurtagung KW - Service-oriented Systems Engineering KW - Hasso Plattner Institute KW - Research School KW - Ph.D. Retreat KW - Service-oriented Systems Engineering Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-63490 SN - 978-3-86956-273-5 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - JOUR A1 - Ghahremani, Sona A1 - Giese, Holger A1 - Vogel, Thomas T1 - Improving scalability and reward of utility-driven self-healing for large dynamic architectures JF - ACM transactions on autonomous and adaptive systems N2 - Self-adaptation can be realized in various ways. Rule-based approaches prescribe the adaptation to be executed if the system or environment satisfies certain conditions. They result in scalable solutions but often with merely satisfying adaptation decisions. In contrast, utility-driven approaches determine optimal decisions by using an often costly optimization, which typically does not scale for large problems. We propose a rule-based and utility-driven adaptation scheme that achieves the benefits of both directions such that the adaptation decisions are optimal, whereas the computation scales by avoiding an expensive optimization. We use this adaptation scheme for architecture-based self-healing of large software systems. For this purpose, we define the utility for large dynamic architectures of such systems based on patterns that define issues the self-healing must address. Moreover, we use pattern-based adaptation rules to resolve these issues. Using a pattern-based scheme to define the utility and adaptation rules allows us to compute the impact of each rule application on the overall utility and to realize an incremental and efficient utility-driven self-healing. In addition to formally analyzing the computational effort and optimality of the proposed scheme, we thoroughly demonstrate its scalability and optimality in terms of reward in comparative experiments with a static rule-based approach as a baseline and a utility-driven approach using a constraint solver. These experiments are based on different failure profiles derived from real-world failure logs. We also investigate the impact of different failure profile characteristics on the scalability and reward to evaluate the robustness of the different approaches. KW - self-healing KW - adaptation rules KW - architecture-based adaptation KW - utility KW - reward KW - scalability KW - performance KW - failure profile model Y1 - 2020 U6 - https://doi.org/10.1145/3380965 SN - 1556-4665 SN - 1556-4703 VL - 14 IS - 3 PB - Association for Computing Machinery CY - New York ER - TY - JOUR A1 - Ghahremani, Sona A1 - Giese, Holger T1 - Evaluation of self-healing systems BT - An analysis of the state-of-the-art and required improvements JF - Computers N2 - Evaluating the performance of self-adaptive systems is challenging due to their interactions with often highly dynamic environments. In the specific case of self-healing systems, the performance evaluations of self-healing approaches and their parameter tuning rely on the considered characteristics of failure occurrences and the resulting interactions with the self-healing actions. In this paper, we first study the state-of-the-art for evaluating the performances of self-healing systems by means of a systematic literature review. We provide a classification of different input types for such systems and analyse the limitations of each input type. A main finding is that the employed inputs are often not sophisticated regarding the considered characteristics for failure occurrences. To further study the impact of the identified limitations, we present experiments demonstrating that wrong assumptions regarding the characteristics of the failure occurrences can result in large performance prediction errors, disadvantageous design-time decisions concerning the selection of alternative self-healing approaches, and disadvantageous deployment-time decisions concerning parameter tuning. Furthermore, the experiments indicate that employing multiple alternative input characteristics can help with reducing the risk of premature disadvantageous design-time decisions. KW - self-healing KW - failure model KW - performance KW - simulation KW - evaluation Y1 - 2020 U6 - https://doi.org/10.3390/computers9010016 SN - 2073-431X VL - 9 IS - 1 PB - MDPI CY - Basel ER - TY - GEN A1 - Ghahremani, Sona A1 - Giese, Holger T1 - Performance evaluation for self-healing systems BT - Current Practice & Open Issues T2 - 2019 IEEE 4th International Workshops on Foundations and Applications of Self* Systems (FAS*W) N2 - Evaluating the performance of self-adaptive systems (SAS) is challenging due to their complexity and interaction with the often highly dynamic environment. In the context of self-healing systems (SHS), employing simulators has been shown to be the most dominant means for performance evaluation. Simulating a SHS also requires realistic fault injection scenarios. We study the state of the practice for evaluating the performance of SHS by means of a systematic literature review. We present the current practice and point out that a more thorough and careful treatment in evaluating the performance of SHS is required. KW - self-healing KW - failure profile KW - evaluation KW - simulator KW - performance Y1 - 2019 SN - 978-1-7281-2406-3 U6 - https://doi.org/10.1109/FAS-W.2019.00039 SP - 116 EP - 119 PB - IEEE CY - New York ER - TY - BOOK A1 - Barkowsky, Matthias A1 - Giese, Holger T1 - Triple graph grammars for multi-version models N2 - Like conventional software projects, projects in model-driven software engineering require adequate management of multiple versions of development artifacts, importantly allowing living with temporary inconsistencies. In the case of model-driven software engineering, employed versioning approaches also have to handle situations where different artifacts, that is, different models, are linked via automatic model transformations. In this report, we propose a technique for jointly handling the transformation of multiple versions of a source model into corresponding versions of a target model, which enables the use of a more compact representation that may afford improved execution time of both the transformation and further analysis operations. Our approach is based on the well-known formalism of triple graph grammars and a previously introduced encoding of model version histories called multi-version models. In addition to showing the correctness of our approach with respect to the standard semantics of triple graph grammars, we conduct an empirical evaluation that demonstrates the potential benefit regarding execution time performance. N2 - Ähnlich zu konventionellen Softwareprojekten erfordern Projekte im Bereich der modellgetriebenen Softwareentwicklung eine adäquate Verwaltung mehrerer Versionen von Entwicklungsartefakten. Eine solche Versionsverwaltung muss es insbesondere ermöglichen, zeitweise mit Inkonsistenzen zu leben. Im Fall der modellgetriebenen Softwareentwicklung muss ein verwendeter Ansatz zusätzlich mit Situationen umgehen können, in denen verschiedene Entwicklungsartefakte, das heißt verschiedene Modelle, durch automatische Modelltransformationen verknüpft sind. In diesem Bericht schlagen wir eine Technik für die integrierte Transformation mehrerer Versionen eines Quellmodells in entsprechende Versionen eines Zielmodells vor. Dies ermöglicht die Verwendung einer kompakteren Repräsentation der Modelle, was zu verbesserten Laufzeiteigenschaften der Transformation und weiterführender Operationen führen kann. Unser Ansatz basiert auf dem bekannten Formalismus der Tripel-Graph-Grammatiken und einer in früheren Arbeiten eingeführten Kodierung von Versionshistorien von Modellen. Neben einem Beweis der Korrektheit des Ansatzes in Bezug auf die standardmäßige Semantik von Tripel-Graph-Grammatiken führen wir eine empirische Evaluierung durch, die den potenziellen Performancevorteil der Technik demonstriert. T3 - Technische Berichte des Hasso-Plattner-Instituts für Digital Engineering an der Universität Potsdam - 155 KW - triple graph grammars KW - multi-version models KW - Tripel-Graph-Grammatiken KW - Modelle mit mehreren Versionen Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-573994 SN - 978-3-86956-556-9 SN - 1613-5652 SN - 2191-1665 IS - 155 SP - 28 EP - 28 ER - TY - BOOK A1 - Flotterer, Boris A1 - Maximova, Maria A1 - Schneider, Sven A1 - Dyck, Johannes A1 - Zöllner, Christian A1 - Giese, Holger A1 - Hély, Christelle A1 - Gaucherel, Cédric T1 - Modeling and Formal Analysis of Meta-Ecosystems with Dynamic Structure using Graph Transformation T3 - Technische Berichte des Hasso-Plattner-Instituts für Digital Engineering an der Universität Potsdam N2 - The dynamics of ecosystems is of crucial importance. Various model-based approaches exist to understand and analyze their internal effects. In this paper, we model the space structure dynamics and ecological dynamics of meta-ecosystems using the formal technique of Graph Transformation (short GT). We build GT models to describe how a meta-ecosystem (modeled as a graph) can evolve over time (modeled by GT rules) and to analyze these GT models with respect to qualitative properties such as the existence of structural stabilities. As a case study, we build three GT models describing the space structure dynamics and ecological dynamics of three different savanna meta-ecosystems. The first GT model considers a savanna meta-ecosystem that is limited in space to two ecosystem patches, whereas the other two GT models consider two savanna meta-ecosystems that are unlimited in the number of ecosystem patches and only differ in one GT rule describing how the space structure of the meta-ecosystem grows. In the first two GT models, the space structure dynamics and ecological dynamics of the meta-ecosystem shows two main structural stabilities: the first one based on grassland-savanna-woodland transitions and the second one based on grassland-desert transitions. The transition between these two structural stabilities is driven by high-intensity fires affecting the tree components. In the third GT model, the GT rule for savanna regeneration induces desertification and therefore a collapse of the meta-ecosystem. We believe that GT models provide a complementary avenue to that of existing approaches to rigorously study ecological phenomena. N2 - Die Dynamik von Ökosystemen ist von entscheidender Bedeutung. Es gibt verschiedene modellbasierte Ansätze, um ihre internen Effekte zu verstehen und zu analysieren. In diesem Beitrag modellieren wir die Raumstrukturdynamik und ökologische Dynamik von Metaökosystemen mit der formalen Technik der Graphtransformation (kurz GT). Wir bauen GT-Modelle, um zu beschreiben, wie sich ein Meta-Ökosystem (modelliert als Graph) im Laufe der Zeit entwickeln kann (modelliert durch GT-Regeln) und analysieren diese GT-Modelle hinsichtlich qualitativer Eigenschaften wie das Vorhandensein struktureller Stabilitäten. Als Fallstudie bauen wir drei GT-Modelle, die die Dynamik der Raumstruktur und die ökologische Dynamik von drei verschiedenen Savannen-Meta-Ökosystemen beschreiben. Das erste GT-Modell betrachtet ein Savannen-Meta-Ökosystem, das räumlich auf zwei Ökosystem-Abschnitte begrenzt ist, während die anderen beiden GT-Modelle zwei Savannen-Meta-Ökosysteme betrachten, die in der Anzahl von Ökosystem-Abschnitten uneingeschränkt sind und sich nur in einer GT-Regel unterscheiden, die beschreibt, wie die Raumstruktur des Meta-Ökosystems wächst. In den ersten beiden GT-Modellen zeigen die Raumstrukturdynamik und die ökologische Dynamik des Metaökosystems zwei Hauptstrukturstabilitäten: die erste basiert auf Grasland-Savannen-Wald-Übergängen und die zweite basiert auf Grasland-Wüsten-Übergängen. Der Übergang zwischen diesen beiden strukturellen Stabilitäten wird durch hochintensive Brände angetrieben, die die Baumkomponenten beeinträchtigen. Beim dritten GT-Modell führt die Savannenregeneration beschreibende GT-Regel zur Wüstenbildung und damit zum Kollaps des Meta-Ökosystems. Wir glauben, dass GT-Modelle eine gute Ergänzung zu bestehenden Ansätzen darstellen, um ökologische Phänomene rigoros zu untersuchen. T3 - Technische Berichte des Hasso-Plattner-Instituts für Digital Engineering an der Universität Potsdam - 147 KW - dynamic systems KW - discrete-event model KW - qualitative model KW - savanna KW - trajectories KW - desertification KW - dynamische Systeme KW - diskretes Ereignismodell KW - qualitatives Modell KW - Savanne KW - Trajektorien KW - Wüstenbildung Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-547643 SN - 978-3-86956-533-0 SN - 1613-5652 SN - 2191-1665 IS - 147 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - BOOK A1 - Beyhl, Thomas A1 - Giese, Holger T1 - Efficient and scalable graph view maintenance for deductive graph databases based on generalized discrimination networks N2 - Graph databases provide a natural way of storing and querying graph data. In contrast to relational databases, queries over graph databases enable to refer directly to the graph structure of such graph data. For example, graph pattern matching can be employed to formulate queries over graph data. However, as for relational databases running complex queries can be very time-consuming and ruin the interactivity with the database. One possible approach to deal with this performance issue is to employ database views that consist of pre-computed answers to common and often stated queries. But to ensure that database views yield consistent query results in comparison with the data from which they are derived, these database views must be updated before queries make use of these database views. Such a maintenance of database views must be performed efficiently, otherwise the effort to create and maintain views may not pay off in comparison to processing the queries directly on the data from which the database views are derived. At the time of writing, graph databases do not support database views and are limited to graph indexes that index nodes and edges of the graph data for fast query evaluation, but do not enable to maintain pre-computed answers of complex queries over graph data. Moreover, the maintenance of database views in graph databases becomes even more challenging when negation and recursion have to be supported as in deductive relational databases. In this technical report, we present an approach for the efficient and scalable incremental graph view maintenance for deductive graph databases. The main concept of our approach is a generalized discrimination network that enables to model nested graph conditions including negative application conditions and recursion, which specify the content of graph views derived from graph data stored by graph databases. The discrimination network enables to automatically derive generic maintenance rules using graph transformations for maintaining graph views in case the graph data from which the graph views are derived change. We evaluate our approach in terms of a case study using multiple data sets derived from open source projects. N2 - Graphdatenbanken bieten natürliche Möglichkeiten Graphdaten zu speichern und abzufragen. Im Gegensatz zu relationalen Datenbanken ermöglichen Graphdatenbanken Anfragen, die direkt auf der Graphstruktur der Daten arbeiten. Zum Beispiel können Graphmuster zur Formulierung von Anfragen an die Graphdatenbanken verwendet werden. Allerdings können wie für relationale Datenbanken komplexe Anfragen sehr zeitaufwendig sein und interaktive Anfrageszenarien mit der Datenbank verhindern. Ein möglicher Ansatz mit diesem Geschwindigkeitsproblem umzugehen, ist das Vorberechnen von Antworten für komplexe und häufig gestellt Suchanfragen in Form von sogenannten Datenbanksichten. Dabei muss sichergestellt sein, dass Anfragen, die mit Hilfe von Datenbanksichten beantwortet werden, zu jeder Zeit die gleichen Suchergebnisse zurückliefern als wenn sie ohne Datenbanksichten beantwortet werden, sodass Datenbanksichten gewartet werden müssen bevor Suchanfragen mit Hilfe dieser Datenbanksichten beantwortet werden. Eine solche Wartung von Datenbanksichten muss effizient erfolgen, anderenfalls kann sich der Aufwand für die Erzeugung und Wartung der Datenbanksichten nicht auszahlen. Zum Zeitpunkt der Anfertigung dieses technischen Berichts, ist keine Graphdatenbank bekannt, die solche Datenbanksichten unterstützt. Lediglich Indizes werden durch Graphdatenbanken unterstützt, die es ermöglichen Knoten und Kanten eines Graphen für die schnelle Anfragenbeantwortung zu indizieren, aber ermöglichen es nicht vorberechnete Antworten auf Suchanfragen zu warten. Die Unterstützung von Datenbanksichten durch Graphdatenbanken wird zusätzlich erschwert wenn Negation und Rekursion unterstützt werden sollen wie bei relationalen deduktiven Datenbanken. In diesen technischen Bericht beschreiben wir einen effizienten und skalierenden Ansatz zur inkrementellen Wartung von Dankenbanksichten für deduktive Graphdatenbanken. Das Hauptkonzept des Ansatzes ist ein sogenanntes verallgemeinertes Discrimination Network, dass es ermöglicht geschachtelte Graph Conditions inklusive Negation und Rekursion zu modellieren, die es ermöglichen den Inhalt von Datenbanksichten für Graphdatenbanken in Form von Graphmustern zu spezifizieren. Das Discrimination Network erlaubt die Ableitung von Regeln für die Wartung der Datenbanksichten wenn die Graphdaten von denen die Datenbanksichten abgeleitet wurden modifiziert werden. Wir evaluieren den Ansatz in Form einer Fallstudie und mehreren Graphdatensätzen, die aus Open Source Projekten abgeleitet wurden. T3 - Technische Berichte des Hasso-Plattner-Instituts für Digital Engineering an der Universität Potsdam - 99 KW - incremental graph pattern matching KW - graph databases KW - view maintenance KW - inkrementelles Graph Pattern Matching KW - Graphdatenbanken KW - Wartung von Graphdatenbanksichten Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-79535 SN - 978-3-86956-339-8 SN - 1613-5652 SN - 2191-1665 IS - 99 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - BOOK A1 - Dyck, Johannes A1 - Giese, Holger T1 - Inductive invariant checking with partial negative application conditions N2 - Graph transformation systems are a powerful formal model to capture model transformations or systems with infinite state space, among others. However, this expressive power comes at the cost of rather limited automated analysis capabilities. The general case of unbounded many initial graphs or infinite state spaces is only supported by approaches with rather limited scalability or expressiveness. In this report we improve an existing approach for the automated verification of inductive invariants for graph transformation systems. By employing partial negative application conditions to represent and check many alternative conditions in a more compact manner, we can check examples with rules and constraints of substantially higher complexity. We also substantially extend the expressive power by supporting more complex negative application conditions and provide higher accuracy by employing advanced implication checks. The improvements are evaluated and compared with another applicable tool by considering three case studies. N2 - Graphtransformationssysteme stellen ein ausdrucksstarkes formales Modell zur Verfügung, um Modelltransformationen und Systeme mit unendlichem Zustandsraum zu beschreiben. Allerdings sorgt diese Ausdrucksstärke für signifikante Einschränkungen bei der automatischen Analyse. Ansätze, die die Analyse allgemeiner Systeme mit unendlichem Zustandsraum oder beliebig vielen initialen Graphen unterstützen, sind in ihrer Skalierbarkeit oder Ausdrucksstärke stark eingeschränkt. In diesem Bericht beschreiben wir Verbesserungen eines existierenden Ansatzes für die automatische Verifikation induktiver Invarianten in Graphtransformationssystemen. Durch die Verwendung partieller negativer Anwendungsbedingungen für die Repräsentation und Überprüfung einer Vielzahl an Bedingungen in kompakterer Form können Regeln und Bedingungen von deutlich höhrerer Komplexität verifiziert werden. Weiterhin wird die Ausdrucksstärke des Ansatzes beträchtlich erhöht, indem die Verwendung komplexerer negativer Anwendungsbedingungen und erweiterter Implikationstests ermöglicht wird. Alle diese Verbesserungen werden evaluiert und mit einem anderen anwendbaren Werkzeug anhand von drei Fallstudien verglichen. T3 - Technische Berichte des Hasso-Plattner-Instituts für Digital Engineering an der Universität Potsdam - 98 KW - verification KW - inductive invariant checking KW - graph transformation KW - partial application conditions KW - Verifikation KW - induktives Invariant Checking KW - Graphtransformationen KW - partielle Anwendungsbedingungen Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-77748 SN - 978-3-86956-333-6 SN - 1613-5652 SN - 2191-1665 IS - 98 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - BOOK A1 - Meinel, Christoph A1 - Döllner, Jürgen Roland Friedrich A1 - Weske, Mathias A1 - Polze, Andreas A1 - Hirschfeld, Robert A1 - Naumann, Felix A1 - Giese, Holger A1 - Baudisch, Patrick A1 - Friedrich, Tobias A1 - Böttinger, Erwin A1 - Lippert, Christoph A1 - Dörr, Christian A1 - Lehmann, Anja A1 - Renard, Bernhard A1 - Rabl, Tilmann A1 - Uebernickel, Falk A1 - Arnrich, Bert A1 - Hölzle, Katharina T1 - Proceedings of the HPI Research School on Service-oriented Systems Engineering 2020 Fall Retreat N2 - Design and Implementation of service-oriented architectures imposes a huge number of research questions from the fields of software engineering, system analysis and modeling, adaptability, and application integration. Component orientation and web services are two approaches for design and realization of complex web-based system. Both approaches allow for dynamic application adaptation as well as integration of enterprise application. Service-Oriented Systems Engineering represents a symbiosis of best practices in object-orientation, component-based development, distributed computing, and business process management. It provides integration of business and IT concerns. The annual Ph.D. Retreat of the Research School provides each member the opportunity to present his/her current state of their research and to give an outline of a prospective Ph.D. thesis. Due to the interdisciplinary structure of the research school, this technical report covers a wide range of topics. These include but are not limited to: Human Computer Interaction and Computer Vision as Service; Service-oriented Geovisualization Systems; Algorithm Engineering for Service-oriented Systems; Modeling and Verification of Self-adaptive Service-oriented Systems; Tools and Methods for Software Engineering in Service-oriented Systems; Security Engineering of Service-based IT Systems; Service-oriented Information Systems; Evolutionary Transition of Enterprise Applications to Service Orientation; Operating System Abstractions for Service-oriented Computing; and Services Specification, Composition, and Enactment. N2 - Der Entwurf und die Realisierung dienstbasierender Architekturen wirft eine Vielzahl von Forschungsfragestellungen aus den Gebieten der Softwaretechnik, der Systemmodellierung und -analyse, sowie der Adaptierbarkeit und Integration von Applikationen auf. Komponentenorientierung und WebServices sind zwei Ansätze für den effizienten Entwurf und die Realisierung komplexer Web-basierender Systeme. Sie ermöglichen die Reaktion auf wechselnde Anforderungen ebenso, wie die Integration großer komplexer Softwaresysteme. "Service-Oriented Systems Engineering" repräsentiert die Symbiose bewährter Praktiken aus den Gebieten der Objektorientierung, der Komponentenprogrammierung, des verteilten Rechnen sowie der Geschäftsprozesse und berücksichtigt auch die Integration von Geschäftsanliegen und Informationstechnologien. Die Klausurtagung des Forschungskollegs "Service-oriented Systems Engineering" findet einmal jährlich statt und bietet allen Kollegiaten die Möglichkeit den Stand ihrer aktuellen Forschung darzulegen. Bedingt durch die Querschnittstruktur des Kollegs deckt dieser Bericht ein weites Spektrum aktueller Forschungsthemen ab. Dazu zählen unter anderem Human Computer Interaction and Computer Vision as Service; Service-oriented Geovisualization Systems; Algorithm Engineering for Service-oriented Systems; Modeling and Verification of Self-adaptive Service-oriented Systems; Tools and Methods for Software Engineering in Service-oriented Systems; Security Engineering of Service-based IT Systems; Service-oriented Information Systems; Evolutionary Transition of Enterprise Applications to Service Orientation; Operating System Abstractions for Service-oriented Computing; sowie Services Specification, Composition, and Enactment. T3 - Technische Berichte des Hasso-Plattner-Instituts für Digital Engineering an der Universität Potsdam - 138 KW - Hasso Plattner Institute KW - research school KW - Ph.D. retreat KW - service-oriented systems engineering KW - Hasso-Plattner-Institut KW - Forschungskolleg KW - Klausurtagung KW - Service-oriented Systems Engineering Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-504132 SN - 978-3-86956-513-2 SN - 1613-5652 SN - 2191-1665 IS - 138 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - BOOK A1 - Maximova, Maria A1 - Schneider, Sven A1 - Giese, Holger T1 - Compositional analysis of probabilistic timed graph transformation systems N2 - The analysis of behavioral models is of high importance for cyber-physical systems, as the systems often encompass complex behavior based on e.g. concurrent components with mutual exclusion or probabilistic failures on demand. The rule-based formalism of probabilistic timed graph transformation systems is a suitable choice when the models representing states of the system can be understood as graphs and timed and probabilistic behavior is important. However, model checking PTGTSs is limited to systems with rather small state spaces. We present an approach for the analysis of large scale systems modeled as probabilistic timed graph transformation systems by systematically decomposing their state spaces into manageable fragments. To obtain qualitative and quantitative analysis results for a large scale system, we verify that results obtained for its fragments serve as overapproximations for the corresponding results of the large scale system. Hence, our approach allows for the detection of violations of qualitative and quantitative safety properties for the large scale system under analysis. We consider a running example in which we model shuttles driving on tracks of a large scale topology and for which we verify that shuttles never collide and are unlikely to execute emergency brakes. In our evaluation, we apply an implementation of our approach to the running example. N2 - Die Analyse von Verhaltensmodellen ist für cyber-physikalische Systeme von hoher Bedeutung, da die Systeme häufig komplexes Verhalten umfassen, das z.B. parallele Komponenten mit gegenseitigem Ausschluss oder probabilistischen Fehlern bei Bedarf umfasst. Der regelbasierte Formalismus probabilistischer zeitgesteuerter Graphtransformationssysteme ist eine geeignete Wahl, wenn die Modelle, die Zustände des Systems darstellen, als Graphen verstanden werden können und zeitgesteuertes und probabilistisches Verhalten wichtig ist. Modelchecking von PTGTSs ist jedoch auf Systeme mit relativ kleinen Zustandsräumen beschränkt. Wir präsentieren einen Ansatz zur Analyse von Großsystemen, die als probabilistische zeitgesteuerte Graphtransformationssysteme modelliert wurden, indem ihre Zustandsräume systematisch in überschaubare Fragmente zerlegt werden. Um qualitative und quantitative Analyseergebnisse für ein Großsystem zu erhalten, überprüfen wir, ob die für seine Fragmente erhaltenen Ergebnisse als Überannäherungen für die entsprechenden Ergebnisse des Großsystems dienen. Unser Ansatz ermöglicht es daher, Verstöße gegen qualitative und quantitative Sicherheitseigenschaften für das untersuchte Großsystem zu erkennen. Wir betrachten ein Beispiel, in dem wir Shuttles modellieren, die auf Gleisen einer großen Topologie fahren, und für die wir überprüfen, dass Shuttles niemals kollidieren und wahrscheinlich keine Notbremsungen ausführen. In unserer Auswertung wenden wir eine Implementierung unseres Ansatzes auf das Beispiel an. T3 - Technische Berichte des Hasso-Plattner-Instituts für Digital Engineering an der Universität Potsdam - 133 KW - cyber-physical systems KW - graph transformation systems KW - qualitative analysis KW - quantitative analysis KW - probabilistic timed systems KW - compositional analysis KW - model checking KW - Cyber-physikalische Systeme KW - Graphentransformationssysteme KW - qualitative Analyse KW - quantitative Analyse KW - probabilistische zeitgesteuerte Systeme KW - Modellprüfung KW - kompositionale Analyse Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-490131 SN - 978-3-86956-501-9 SN - 1613-5652 SN - 2191-1665 IS - 133 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - BOOK A1 - Giese, Holger A1 - Maximova, Maria A1 - Sakizloglou, Lucas A1 - Schneider, Sven T1 - Metric temporal graph logic over typed attributed graphs N2 - Various kinds of typed attributed graphs are used to represent states of systems from a broad range of domains. For dynamic systems, established formalisms such as graph transformations provide a formal model for defining state sequences. We consider the extended case where time elapses between states and introduce a logic to reason about these sequences. With this logic we express properties on the structure and attributes of states as well as on the temporal occurrence of states that are related by their inner structure, which no formal logic over graphs accomplishes concisely so far. Firstly, we introduce graphs with history by equipping every graph element with the timestamp of its creation and, if applicable, its deletion. Secondly, we define a logic on graphs by integrating the temporal operator until into the well-established logic of nested graph conditions. Thirdly, we prove that our logic is equally expressive to nested graph conditions by providing a suitable reduction. Finally, the implementation of this reduction allows for the tool-based analysis of metric temporal properties for state sequences. N2 - Verschiedene Arten von getypten attributierten Graphen werden benutzt, um Zustände von Systemen in vielen unterschiedlichen Anwendungsbereichen zu beschreiben. Der etablierte Formalismus der Graphtransformationen bietet ein formales Model, um Zustandssequenzen für dynamische Systeme zu definieren. Wir betrachten den erweiterten Fall von solchen Sequenzen, in dem Zeit zwischen zwei verschiedenen Systemzuständen vergeht, und führen eine Logik ein, um solche Sequenzen zu beschreiben. Mit dieser Logik drücken wir zum einen Eigenschaften über die Struktur und die Attribute von Zuständen aus und beschreiben zum anderen temporale Vorkommen von Zuständen, die durch ihre innere Struktur verbunden sind. Solche Eigenschaften können bisher von keiner der existierenden Logiken auf Graphen vergleichbar darstellt werden. Erstens führen wir Graphen mit Änderungshistorie ein, indem wir jedes Graphelement mit einem Zeitstempel seiner Erzeugung und, wenn nötig, seiner Löschung versehen. Zweitens definieren wir eine Logik auf Graphen, indem wir den Temporaloperator Until in die wohl-etablierte Logik der verschachtelten Graphbedingungen integrieren. Drittens beweisen wir, dass unsere Logik gleich ausdrucksmächtig ist, wie die Logik der verschachtelten Graphbedingungen, indem wir eine passende Reduktionsoperation definieren. Zuletzt erlaubt uns die Implementierung dieser Reduktionsoperation die werkzeukbasierte Analyse von metrisch-temporallogischen Eigenschaften für Zustandssequenzen zu führen. T3 - Technische Berichte des Hasso-Plattner-Instituts für Digital Engineering an der Universität Potsdam - 123 KW - nested graph conditions KW - sequence properties KW - symbolic graphs KW - typed attributed graphs KW - metric temporal logic KW - temporal logic KW - runtime monitoring KW - verschachtelte Anwendungsbedingungen KW - Sequenzeigenschaften KW - symbolische Graphen KW - getypte Attributierte Graphen KW - metrische Temporallogik KW - Temporallogik KW - Runtime-monitoring Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-411351 SN - 978-3-86956-433-3 SN - 1613-5652 SN - 2191-1665 IS - 123 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - BOOK A1 - Dyck, Johannes A1 - Giese, Holger T1 - k-Inductive invariant checking for graph transformation systems N2 - While offering significant expressive power, graph transformation systems often come with rather limited capabilities for automated analysis, particularly if systems with many possible initial graphs and large or infinite state spaces are concerned. One approach that tries to overcome these limitations is inductive invariant checking. However, the verification of inductive invariants often requires extensive knowledge about the system in question and faces the approach-inherent challenges of locality and lack of context. To address that, this report discusses k-inductive invariant checking for graph transformation systems as a generalization of inductive invariants. The additional context acquired by taking multiple (k) steps into account is the key difference to inductive invariant checking and is often enough to establish the desired invariants without requiring the iterative development of additional properties. To analyze possibly infinite systems in a finite fashion, we introduce a symbolic encoding for transformation traces using a restricted form of nested application conditions. As its central contribution, this report then presents a formal approach and algorithm to verify graph constraints as k-inductive invariants. We prove the approach's correctness and demonstrate its applicability by means of several examples evaluated with a prototypical implementation of our algorithm. N2 - Während Graphtransformationssysteme einerseits einen ausdrucksstarken Formalismus bereitstellen, existieren andererseits nur eingeschränkte Möglichkeiten für die automatische Analyse. Dies gilt insbesondere für die Analyse von Systemen mit einer Vielzahl an initialen Graphen oder mit großen oder unendlichen Zustandsräumen. Ein möglicher Ansatz, um diese Einschränkungen zu umgehen, sind induktive Invarianten. Allerdings erfordert die Verifkation induktiver Invarianten oft erweitertes Wissen über das zu verifizierende System; weiterhin muss diese Verifikationstechnik mit den spezifischen Problemen der Lokalität und des Mangels an Kontextwissen umgehen. Dieser Bericht betrachtet k-induktive Invarianten - eine Verallgemeinerung induktiver Invarienten - für Graphtransformationssysteme als einen möglichen Ansatz, um diese Probleme anzugehen. Zusätzliches Kontextwissen, das durch die Analyse mehrerer (k) Schritte gewonnen werden kann, macht den entscheidenden Unterschied zu induktiven Invarianten aus und genügt oft, um die gewünschten Invarianten ohne die iterative Entwicklung zusätzlicher Eigenschaften zu verifizieren. Um unendliche Systeme in endlicher Zeit zu analysieren, führen wir eine symbolische Kodierung von Transformationssequenzen ein, die auf verschachtelten Anwendungsbedingungen basiert. Unser zentraler Beitrag ist dann ein formaler Ansatz und Algorithmus zur Verifikation von Graphbedingungen als k-induktive Invarianten. Wir führen einen formalen Beweis, um die Korrektheit unseres Verfahrens nachzuweisen, und demonstrieren die Anwendbarkeit des Verfahrens an mehreren Beispielen, die mit einer prototypischen Implementierung verifiziert wurden. T3 - Technische Berichte des Hasso-Plattner-Instituts für Digital Engineering an der Universität Potsdam - 119 KW - formal verification KW - static analysis KW - graph transformation KW - typed graph transformation systems KW - graph constraints KW - nested application conditions KW - k-inductive invariants KW - k-induction KW - k-inductive invariant checking KW - transformation sequences KW - s/t-pattern sequences KW - formale Verifikation KW - statische Analyse KW - Graphtransformationen KW - Graphtransformationssysteme KW - Graphbedingungen KW - verschachtelte Anwednungsbedingungen KW - k-induktive Invarianten KW - k-Induktion KW - k-induktives Invariant-Checking KW - Transformationssequenzen KW - Sequenzen von s/t-Pattern Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-397044 SN - 978-3-86956-406-7 SN - 1613-5652 SN - 2191-1665 IS - 119 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - BOOK A1 - Maximova, Maria A1 - Giese, Holger A1 - Krause, Christian T1 - Probabilistic timed graph transformation systems T1 - Probabilistische zeitbehaftete Graphtransformationssysteme N2 - Today, software has become an intrinsic part of complex distributed embedded real-time systems. The next generation of embedded real-time systems will interconnect the today unconnected systems via complex software parts and the service-oriented paradigm. Therefore besides timed behavior and probabilistic behaviour also structure dynamics, where the architecture can be subject to changes at run-time, e.g. when dynamic binding of service end-points is employed or complex collaborations are established dynamically, is required. However, a modeling and analysis approach that combines all these necessary aspects does not exist so far. To fill the identified gap, we propose Probabilistic Timed Graph Transformation Systems (PTGTSs) as a high-level description language that supports all the necessary aspects of structure dynamics, timed behavior, and probabilistic behavior. We introduce the formal model of PTGTSs in this paper and present a mapping of models with finite state spaces to probabilistic timed automata (PTA) that allows to use the PRISM model checker to analyze PTGTS models with respect to PTCTL properties. N2 - Software gehört heutzutage zu einem wesentlichen Bestandteil von komplexen eingebetteten Echtzeitsystemen. Die nächste Generation von eingebetteten Echtzeitsystemen wird in der Zukunft die bisher nicht verbundenen Systeme durch komplexe Softwarelösungen unter der Verwendung des serviceorientierten Paradigmas verbinden. Deswegen wird neben der Beschreibung des zeitbehafteten und probabilistischen Verhaltens auch die Betrachtung der Strukturdynamik benötigt, um die Modellierung der Architekturänderungen während der Laufzeit zu ermöglichen, wie z. B. die dynamische Anbindung von den Endpunkten der Services oder die dynamische Erstellung der komplexen Kollaborationen. Allerdings gibt es noch keinen Ansatz für die Modellierung und Analyse, der all diese drei notwendigen Aspekte kombiniert. Um die identifizierte Lücke zu schließen, führen wir probabilistische zeitbehaftete Graphtransformationssysteme (kurz PTGTS) ein, die als abstrakte Beschreibungssprache dienen und die notwendigen Aspekte der Strukturdynamik, des zeitbehafteten Verhaltens und des probabilistischen Verhaltens unterstützen. Außerdem stellen wir den Formalismus der probabilistischen zeitbehafteten Graphtransformationssysteme vor und definieren eine Abbildung zwischen den Modellen mit endlichen Zustandsräumen und probabilistischen zeitbehafteten Automaten, die die Nutzung des PRISM Modell-Checkers für die Analyse der PTGTS Modelle in Bezug auf PTCTL Eigenschaften ermöglichen. T3 - Technische Berichte des Hasso-Plattner-Instituts für Digital Engineering an der Universität Potsdam - 118 KW - graph transformations KW - probabilistic timed automata KW - PTCTL KW - PRISM model checker KW - HENSHIN KW - Graphtransformationen KW - probabilistische zeitbehaftete Automaten KW - PTCTL KW - PRISM Modell-Checker KW - HENSHIN Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-397055 SN - 978-3-86956-405-0 SN - 1613-5652 SN - 2191-1665 IS - 118 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - BOOK A1 - Schneider, Sven A1 - Maximova, Maria A1 - Giese, Holger T1 - Invariant Analysis for Multi-Agent Graph Transformation Systems using k-Induction N2 - The analysis of behavioral models such as Graph Transformation Systems (GTSs) is of central importance in model-driven engineering. However, GTSs often result in intractably large or even infinite state spaces and may be equipped with multiple or even infinitely many start graphs. To mitigate these problems, static analysis techniques based on finite symbolic representations of sets of states or paths thereof have been devised. We focus on the technique of k-induction for establishing invariants specified using graph conditions. To this end, k-induction generates symbolic paths backwards from a symbolic state representing a violation of a candidate invariant to gather information on how that violation could have been reached possibly obtaining contradictions to assumed invariants. However, GTSs where multiple agents regularly perform actions independently from each other cannot be analyzed using this technique as of now as the independence among backward steps may prevent the gathering of relevant knowledge altogether. In this paper, we extend k-induction to GTSs with multiple agents thereby supporting a wide range of additional GTSs. As a running example, we consider an unbounded number of shuttles driving on a large-scale track topology, which adjust their velocity to speed limits to avoid derailing. As central contribution, we develop pruning techniques based on causality and independence among backward steps and verify that k-induction remains sound under this adaptation as well as terminates in cases where it did not terminate before. N2 - Die Analyse von Verhaltensmodellen wie Graphtransformationssystemen (GTSs) ist von zentraler Bedeutung im Model Driven Engineering. GTSs führen jedoch häufig zu unhanhabbar großen oder sogar unendlichen Zustandsräumen und können mit mehreren oder sogar unendlich vielen Startgraphen ausgestattet sein. Um diese Probleme abzumildern, wurden statische Analysetechniken entwickelt, die auf endlichen symbolischen Darstellungen von Mengen von Zuständen oder Pfaden basieren. Wir konzentrieren uns auf die Technik der k-Induktion zur Ermittlung von Invarianten, die unter Verwendung von Graphbedingungen spezifiziert sind. Zum Zweck der Analyse erzeugt die k-Induktion symbolische Rückwärtspfade von einem symbolischen Zustand, der eine Verletzung einer Kandidateninvariante darstellt, um Informationen darüber zu sammeln, wie diese Verletzung erreicht werden konnte, wodurch möglicherweise Widersprüche zu angenommenen Invarianten gefunden werden. GTSs, bei denen mehrere Agenten regelmäßig unabhängig voneinander Aktionen ausführen, können derzeit jedoch nicht mit dieser Technik analysiert werden, da die Unabhängigkeit zwischen Rückwärtsschritten das Sammeln von relevantem Wissen möglicherweise verhindert. In diesem Artikel erweitern wir die k-Induktion auf GTSs mit mehreren Agenten und unterstützen dadurch eine breite Palette zusätzlicher GTSs. Als laufendes Beispiel betrachten wir eine unbegrenzte Anzahl von Shuttles, die auf einer großen Tracktopologie fahren und die ihre Geschwindigkeit an Geschwindigkeitsbegrenzungen anpassen, um ein Entgleisen zu vermeiden. Als zentralen Beitrag entwickeln wir Beschneidungstechniken basierend auf Kausalität und Unabhängigkeit zwischen Rückwärtsschritten und verifizieren, dass die k-Induktion unter dieser Anpassung korrekt bleibt und in Fällen terminiert, in denen sie zuvor nicht terminierte. T3 - Technische Berichte des Hasso-Plattner-Instituts für Digital Engineering an der Universität Potsdam - 143 KW - k-inductive invariant checking KW - causality KW - parallel and sequential independence KW - symbolic analysis KW - bounded backward model checking KW - k-induktive Invariantenprüfung KW - Kausalität KW - parallele und Sequentielle Unabhängigkeit KW - symbolische Analyse KW - Bounded Backward Model Checking Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-545851 SN - 978-3-86956-531-6 SN - 1613-5652 SN - 2191-1665 IS - 143 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - BOOK A1 - Schneider, Sven A1 - Maximova, Maria A1 - Giese, Holger T1 - Probabilistic metric temporal graph logic N2 - Cyber-physical systems often encompass complex concurrent behavior with timing constraints and probabilistic failures on demand. The analysis whether such systems with probabilistic timed behavior adhere to a given specification is essential. When the states of the system can be represented by graphs, the rule-based formalism of Probabilistic Timed Graph Transformation Systems (PTGTSs) can be used to suitably capture structure dynamics as well as probabilistic and timed behavior of the system. The model checking support for PTGTSs w.r.t. properties specified using Probabilistic Timed Computation Tree Logic (PTCTL) has been already presented. Moreover, for timed graph-based runtime monitoring, Metric Temporal Graph Logic (MTGL) has been developed for stating metric temporal properties on identified subgraphs and their structural changes over time. In this paper, we (a) extend MTGL to the Probabilistic Metric Temporal Graph Logic (PMTGL) by allowing for the specification of probabilistic properties, (b) adapt our MTGL satisfaction checking approach to PTGTSs, and (c) combine the approaches for PTCTL model checking and MTGL satisfaction checking to obtain a Bounded Model Checking (BMC) approach for PMTGL. In our evaluation, we apply an implementation of our BMC approach in AutoGraph to a running example. N2 - Cyber-physische Systeme umfassen häufig ein komplexes nebenläufiges Verhalten mit Zeitbeschränkungen und probabilistischen Fehlern auf Anforderung. Die Analyse, ob solche Systeme mit probabilistischem gezeitetem Verhalten einer vorgegebenen Spezifikation entsprechen, ist essentiell. Wenn die Zustände des Systems durch Graphen dargestellt werden können, kann der regelbasierte Formalismus von probabilistischen gezeiteten Graphtransformationssystemen (PTGTSs) verwendet werden, um die Strukturdynamik sowie das probabilistische und gezeitete Verhalten des Systems geeignet zu erfassen. Die Modellprüfungsunterstützung für PTGTSs bzgl. Eigenschaften, die unter Verwendung von Probabilistic Timed Computation Tree Logic (PTCTL) spezifiziert wurden, wurde bereits entwickelt. Darüber hinaus wurde das gezeitete graphenbasierte Laufzeitmonitoring mittels metrischer temporaler Graphlogik (MTGL) entwickelt, um metrische temporale Eigenschaften auf identifizierten Untergraphen und ihre strukturellen Änderungen über die Zeit zu erfassen. In diesem Artikel (a) erweitern wir MTGL auf die probabilistische metrische temporale Graphlogik (PMTGL), indem wir die Spezifikation probabilistischer Eigenschaften zulassen, (b) passen unseren MTGL-Prüfungsansatz auf PTGTSs an und (c) kombinieren die Ansätze für PTCTL-Modellprüfung und MTGL-Prüfung, um einen beschränkten Modellprüfungsansatz (BMC-Ansatz) für PMTGL zu erhalten. In unserer Auswertung wenden wir eine Implementierung unseres BMC-Ansatzes in AutoGraph auf ein Beispiel an. T3 - Technische Berichte des Hasso-Plattner-Instituts für Digital Engineering an der Universität Potsdam - 146 KW - cyber-physical systems KW - probabilistic timed systems KW - qualitative analysis KW - quantitative analysis KW - bounded model checking KW - cyber-physische Systeme KW - probabilistische gezeitete Systeme KW - qualitative Analyse KW - quantitative Analyse KW - Bounded Model Checking Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-545867 SN - 978-3-86956-532-3 SN - 1613-5652 SN - 2191-1665 IS - 146 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - BOOK A1 - Maximova, Maria A1 - Schneider, Sven A1 - Giese, Holger T1 - Interval probabilistic timed graph transformation systems N2 - The formal modeling and analysis is of crucial importance for software development processes following the model based approach. We present the formalism of Interval Probabilistic Timed Graph Transformation Systems (IPTGTSs) as a high-level modeling language. This language supports structure dynamics (based on graph transformation), timed behavior (based on clocks, guards, resets, and invariants as in Timed Automata (TA)), and interval probabilistic behavior (based on Discrete Interval Probability Distributions). That is, for the probabilistic behavior, the modeler using IPTGTSs does not need to provide precise probabilities, which are often impossible to obtain, but rather provides a probability range instead from which a precise probability is chosen nondeterministically. In fact, this feature on capturing probabilistic behavior distinguishes IPTGTSs from Probabilistic Timed Graph Transformation Systems (PTGTSs) presented earlier. Following earlier work on Interval Probabilistic Timed Automata (IPTA) and PTGTSs, we also provide an analysis tool chain for IPTGTSs based on inter-formalism transformations. In particular, we provide in our tool AutoGraph a translation of IPTGTSs to IPTA and rely on a mapping of IPTA to Probabilistic Timed Automata (PTA) to allow for the usage of the Prism model checker. The tool Prism can then be used to analyze the resulting PTA w.r.t. probabilistic real-time queries asking for worst-case and best-case probabilities to reach a certain set of target states in a given amount of time. N2 - Die formale Modellierung und Analyse ist für Softwareentwicklungsprozesse nach dem modellbasierten Ansatz von entscheidender Bedeutung. Wir präsentieren den Formalismus von Interval Probabilistic Timed Graph Transformation Systems (IPTGTS) als Modellierungssprache auf hoher abstrakter Ebene. Diese Sprache unterstützt Strukturdynamik (basierend auf Graphtransformation), zeitgesteuertes Verhalten (basierend auf Clocks, Guards, Resets und Invarianten wie in Timed Automata (TA)) und intervallwahrscheinliches Verhalten (basierend auf diskreten Intervallwahrscheinlichkeitsverteilungen). Das heißt, für das probabilistische Verhalten muss der Modellierer, der IPTGTS verwendet, keine genauen Wahrscheinlichkeiten bereitstellen, die oft nicht zu bestimmen sind, sondern stattdessen einen Wahrscheinlichkeitsbereich bereitstellen, aus dem eine genaue Wahrscheinlichkeit nichtdeterministisch ausgewählt wird. Tatsächlich unterscheidet diese Funktion zur Erfassung des probabilistischen Verhaltens IPTGTS von den zuvor vorgestellten PTGTS (Probabilistic Timed Graph Transformation Systems). Nach früheren Arbeiten zu Intervall Probabilistic Timed Automata (IPTA) und PTGTS bieten wir auch eine Analyse-Toolkette für IPTGTS, die auf Interformalismus-Transformationen basiert. Insbesondere bieten wir in unserem Tool AutoGraph eine Übersetzung von IPTGTSs in IPTA und stützen uns auf eine Zuordnung von IPTA zu probabilistischen zeitgesteuerten Automaten (PTA), um die Verwendung des Prism-Modellprüfers zu ermöglichen. Das Werkzeug Prism kann dann verwendet werden, um den resultierenden PTA bezüglich probabilistische Echtzeitabfragen (in denen nach Worst-Case- und Best-Case-Wahrscheinlichkeiten gefragt wird, um einen bestimmten Satz von Zielzuständen in einem bestimmten Zeitraum zu erreichen) zu analysieren. T3 - Technische Berichte des Hasso-Plattner-Instituts für Digital Engineering an der Universität Potsdam - 134 KW - cyber-physical systems KW - graph transformation systems KW - interval timed automata KW - timed automata KW - qualitative analysis KW - quantitative analysis KW - probabilistic timed systems KW - interval probabilistic timed systems KW - model checking KW - cyber-physikalische Systeme KW - Graphentransformationssysteme KW - Interval Timed Automata KW - Timed Automata KW - qualitative Analyse KW - quantitative Analyse KW - probabilistische zeitgesteuerte Systeme KW - interval probabilistische zeitgesteuerte Systeme KW - Modellprüfung Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-512895 SN - 978-3-86956-502-6 SN - 1613-5652 SN - 2191-1665 IS - 134 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - BOOK A1 - Schneider, Sven A1 - Maximova, Maria A1 - Giese, Holger T1 - Probabilistic metric temporal graph logic N2 - Cyber-physical systems often encompass complex concurrent behavior with timing constraints and probabilistic failures on demand. The analysis whether such systems with probabilistic timed behavior adhere to a given specification is essential. When the states of the system can be represented by graphs, the rule-based formalism of Probabilistic Timed Graph Transformation Systems (PTGTSs) can be used to suitably capture structure dynamics as well as probabilistic and timed behavior of the system. The model checking support for PTGTSs w.r.t. properties specified using Probabilistic Timed Computation Tree Logic (PTCTL) has been already presented. Moreover, for timed graph-based runtime monitoring, Metric Temporal Graph Logic (MTGL) has been developed for stating metric temporal properties on identified subgraphs and their structural changes over time. In this paper, we (a) extend MTGL to the Probabilistic Metric Temporal Graph Logic (PMTGL) by allowing for the specification of probabilistic properties, (b) adapt our MTGL satisfaction checking approach to PTGTSs, and (c) combine the approaches for PTCTL model checking and MTGL satisfaction checking to obtain a Bounded Model Checking (BMC) approach for PMTGL. In our evaluation, we apply an implementation of our BMC approach in AutoGraph to a running example. N2 - Cyber-physische Systeme umfassen häufig ein komplexes nebenläufiges Verhalten mit Zeitbeschränkungen und probabilistischen Fehlern auf Anforderung. Die Analyse, ob solche Systeme mit probabilistischem gezeitetem Verhalten einer vorgegebenen Spezifikation entsprechen, ist essentiell. Wenn die Zustände des Systems durch Graphen dargestellt werden können, kann der regelbasierte Formalismus von probabilistischen gezeiteten Graphtransformationssystemen (PTGTSs) verwendet werden, um die Strukturdynamik sowie das probabilistische und gezeitete Verhalten des Systems geeignet zu erfassen. Die Modellprüfungsunterstützung für PTGTSs bzgl. Eigenschaften, die unter Verwendung von probabilistischer zeitgesteuerter Berechnungsbaumlogik (PTCTL) spezifiziert wurden, wurde bereits entwickelt. Darüber hinaus wurde das gezeitete graphenbasierte Laufzeitmonitoring mittels metrischer temporaler Graphlogik (MTGL) entwickelt, um metrische temporale Eigenschaften auf identifizierten Untergraphen und ihre strukturellen Änderungen über die Zeit zu erfassen. In diesem Artikel (a) erweitern wir MTGL auf die probabilistische metrische temporale Graphlogik (PMTGL), indem wir die Spezifikation probabilistischer Eigenschaften zulassen, (b) passen unseren MTGL-Prüfungsansatz auf PTGTSs an und (c) kombinieren die Ansätze für PTCTL-Modellprüfung und MTGL-Prüfung, um einen beschränkten Modellprüfungsansatz (BMC-Ansatz) für PMTGL zu erhalten. In unserer Auswertung wenden wir eine Implementierung unseres BMC-Ansatzes in AutoGraph auf ein Beispiel an. T3 - Technische Berichte des Hasso-Plattner-Instituts für Digital Engineering an der Universität Potsdam - 140 KW - cyber-physische Systeme KW - probabilistische gezeitete Systeme KW - qualitative Analyse KW - quantitative Analyse KW - Bounded Model Checking KW - cyber-physical systems KW - probabilistic timed systems KW - qualitative analysis KW - quantitative analysis KW - bounded model checking Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-515066 SN - 978-3-86956-517-0 SN - 1613-5652 SN - 2191-1665 IS - 140 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - BOOK A1 - Dyck, Johannes A1 - Giese, Holger A1 - Lambers, Leen T1 - Automatic verification of behavior preservation at the transformation level for relational model transformation N2 - The correctness of model transformations is a crucial element for model-driven engineering of high quality software. In particular, behavior preservation is the most important correctness property avoiding the introduction of semantic errors during the model-driven engineering process. Behavior preservation verification techniques either show that specific properties are preserved, or more generally and complex, they show some kind of behavioral equivalence or refinement between source and target model of the transformation. Both kinds of behavior preservation verification goals have been presented with automatic tool support for the instance level, i.e. for a given source and target model specified by the model transformation. However, up until now there is no automatic verification approach available at the transformation level, i.e. for all source and target models specified by the model transformation. In this report, we extend our results presented in [27] and outline a new sophisticated approach for the automatic verification of behavior preservation captured by bisimulation resp. simulation for model transformations specified by triple graph grammars and semantic definitions given by graph transformation rules. In particular, we show that the behavior preservation problem can be reduced to invariant checking for graph transformation and that the resulting checking problem can be addressed by our own invariant checker even for a complex example where a sequence chart is transformed into communicating automata. We further discuss today's limitations of invariant checking for graph transformation and motivate further lines of future work in this direction. N2 - Die Korrektheit von Modelltransformationen ist von zentraler Wichtigkeit bei der Anwendung modellgetriebener Softwareentwicklung für die Entwicklung hochqualitativer Software. Insbesondere verhindert Verhaltensbewahrung als wichtigste Korrektheitseigenschaft die Entstehung semantischer Fehler während des modellgetriebenen Entwicklungsprozesses. Techniken zur Verifikation von Verhaltensbewahrung zeigen, dass bestimmte spezifische Eigenschaften bewahrt bleiben oder, im allgemeineren und komplexeren Fall, dass eine Form von Verhaltensäquivalenz oder Verhaltensverfeinerung zwischen Quell- und Zielmodell der Transformation besteht. Für beide Ansätze existieren automatisierte Werkzeuge für die Verifikation auf der Instanzebene, also zur Überprüfung konkreter Paare aus Quell- und Zielmodellen der Transformation. Allerdings existiert kein automatischer Verifikationsansatz, der auf der Transformationsebene arbeitet, also Aussagen zu allen Quell- und Zielmodellen einer Modelltransformation treffen kann. Dieser Bericht erweitert unsere Vorarbeit und Ergebnisse aus [27] und stellt einen neuen Ansatz zur automatischen Verifikation von Verhaltensbewahrung vor, der auf Bisimulation bzw. Simulation basiert. Dabei werden Modelltransformationen durch Triple-Graph-Grammatiken und Verhaltensdefinitionen mittels Graphtransformationsregeln beschrieben. Insbesondere weisen wir nach, dass das Problem der Verhaltensbewahrung durch Bisimulation auf Invariant-Checking für Graphtransformationssysteme reduziert werden kann und dass das entstehende Invariant-Checking-Problem für ein komplexes Beispiel durch unser Werkzeug zur Verifikation induktiver Invarianten gelöst werden kann. Das Beispiel beschreibt die Transformation von Sequenzdiagrammen in Systeme kommunizierender Automaten. Darüber hinaus diskutieren wir bestehende Einschränkungen von Invariant-Checking für Graphtransformationssysteme und Ansätze für zukünftige Arbeiten in diesem Bereich. T3 - Technische Berichte des Hasso-Plattner-Instituts für Digital Engineering an der Universität Potsdam - 112 KW - model transformation KW - behavior preservation KW - semantics preservation KW - relational model transformation KW - bisimulation KW - simulation KW - invariant checking KW - transformation level KW - behavioral equivalenc KW - behavioral refinement KW - behavioral abstraction KW - graph transformation systems KW - graph constraints KW - triple graph grammars KW - Modelltransformationen KW - Verhaltensbewahrung KW - relationale Modelltransformationen KW - Bisimulation KW - Simulation KW - Invariant-Checking KW - Transformationsebene KW - Verhaltensäquivalenz KW - Verhaltensverfeinerung KW - Verhaltensabstraktion KW - Graphtransformationssysteme KW - Graph-Constraints KW - Triple-Graph-Grammatiken Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-100279 SN - 978-3-86956-391-6 SN - 1613-5652 SN - 2191-1665 IS - 112 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - BOOK A1 - Giese, Holger A1 - Maximova, Maria A1 - Sakizloglou, Lucas A1 - Schneider, Sven T1 - Metric temporal graph logic over typed attributed graphs BT - extended version N2 - Graph repair, restoring consistency of a graph, plays a prominent role in several areas of computer science and beyond: For example, in model-driven engineering, the abstract syntax of models is usually encoded using graphs. Flexible edit operations temporarily create inconsistent graphs not representing a valid model, thus requiring graph repair. Similarly, in graph databases—managing the storage and manipulation of graph data—updates may cause that a given database does not satisfy some integrity constraints, requiring also graph repair. We present a logic-based incremental approach to graph repair, generating a sound and complete (upon termination) overview of least-changing repairs. In our context, we formalize consistency by so-called graph conditions being equivalent to first-order logic on graphs. We present two kind of repair algorithms: State-based repair restores consistency independent of the graph update history, whereas deltabased (or incremental) repair takes this history explicitly into account. Technically, our algorithms rely on an existing model generation algorithm for graph conditions implemented in AutoGraph. Moreover, the delta-based approach uses the new concept of satisfaction (ST) trees for encoding if and how a graph satisfies a graph condition. We then demonstrate how to manipulate these STs incrementally with respect to a graph update. N2 - Verschiedene Arten typisierter attributierter Graphen können verwendet werden, um Systemzustände aus einem breiten Bereich von Domänen darzustellen. Für dynamische Systeme können etablierte Formalismen wie die Graphtransformation ein formales Modell für die Definition von Zustandssequenzen liefern. Wir betrachten den Fall, in dem zwischen Zustandsänderungen Zeit vergehen kann, und führen eine Logik ein, die als Metric Temporal Graph Logic (MTGL) bezeichnet wird, um über solche zeitgesteuerten Graphsequenzen zu urteilen. Mit dieser Logik drücken wir Eigenschaften der Struktur und der Attribute von Zuständen sowie des Auftretens von Zuständen über die Zeit aus, die durch ihre innere Struktur miteinander verbunden sind, was bisher keine formale Logik über Graphen präzise bewerkstelligt. Erstens, basierend auf zeitgesteuerten Graphsequenzen als Modelle für die Systemevolution, definieren wir MTGL, indem wir den zeitlichen Operator bis zu einer gewissen Zeitgrenze in die etablierte Logik von (verschachtelten) Graphbedingungen integrieren. Zweitens skizzieren wir, wie eine endliche zeitgesteuerte Diagrammsequenz als einzelnes Diagramm dargestellt werden kann, das alle zeitlichen Änderungen enthält (als Diagramm mit Verlauf bezeichnet), wie die Erfüllung von MTGL-Bedingungen für ein solches Diagramm definiert werden kann, und zeigen, dass beide Darstellungen dieselben MTGL-Bedingungen erfüllen. Drittens zeigen wir, wie MTGL-Bedingungen auf (verschachtelte) Diagrammbedingungen reduziert werden können, und zeigen anhand dieser Reduzierung, dass beide zugrunde liegenden Logiken gleichermaßen aussagekräftig sind. Schließlich stellen wir eine Erweiterung des Tools AutoGraph vor, mit der die Erfüllung der MTGL-Bedingungen für zeitgesteuerte Diagrammsequenzen überprüft werden kann, indem die Erfüllung der (verschachtelten) Diagrammbedingungen überprüft wird, die unter Verwendung der vorgeschlagenen Reduzierung für das Diagramm mit dem Verlauf entsprechend dem zeitgesteuerten Diagramm erhalten wurden. T3 - Technische Berichte des Hasso-Plattner-Instituts für Digital Engineering an der Universität Potsdam - 127 KW - typisierte attributierte Graphen KW - metrisch temporale Graph Logic KW - Spezifikation von gezeiteten Graph Transformationen KW - typed attributed graphs KW - metric termporal graph logic KW - specification of timed graph transformations Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-427522 SN - 978-3-86956-463-0 SN - 1613-5652 SN - 2191-1665 IS - 127 PB - Universitätsverlag Potsdam CY - Potsdam ER -