TY - GEN A1 - Kienel, Ulrike A1 - Wulf Bowen, Sabine A1 - Byrne, Roger A1 - Park, Jungjae A1 - Böhnel, Harald A1 - Dulski, Peter A1 - Luhr, James F. A1 - Siebert, Lee A1 - Haug, Gerald H. A1 - Negendank, Jörg F. W. T1 - First lacustrine varve chronologies from Mexico BT - impact of droughts, ENSO and human activity since AD 1840 as recorded in maar sediments from Valle de Santiago T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - We present varve chronologies for sediments from two maar lakes in the Valle de Santiago region (Central Mexico): Hoya La Alberca (AD 1852-1973) and Hoya Rincn de Parangueo (AD 1839-1943). These are the first varve chronologies for Mexican lakes. The varved sections were anchored with tephras from Colima (1913) and Paricutin (1943/1944) and (210)Pb ages. We compare the sequences using the thickness of seasonal laminae and element counts (Al, Si, S, Cl, K, Ti, Mn, Fe, and Sr) determined by micro X-ray fluorescence spectrometry. The formation of the varve sublaminae is attributed to the strongly seasonal climate regime. Limited rainfall and high evaporation rates in winter and spring induce precipitation of carbonates (high Ca, Sr) enriched in (13)C and (18)O, whereas rainfall in summer increases organic and clastic input (plagioclase, quartz) with high counts of lithogenic elements (K, Al, Ti, and Si). Eolian input of Ti occurs also in the dry season. Moving correlations (5-yr windows) of the Ca and Ti counts show similar development in both sequences until the 1930s. Positive correlations indicate mixing of allochthonous Ti and autochthonous Ca, while negative correlations indicate their separation in sublaminae. Negative excursions in the correlations correspond with historic and reconstructed droughts, El Nio events, and positive SST anomalies. Based on our data, droughts (3-7 year duration) were severe and centred around the following years: the early 1850s, 1865, 1880, 1895, 1905, 1915 and the late 1920s with continuation into the 1930s. The latter dry period brought both lake systems into a critical state making them susceptible to further drying. Groundwater overexploitation due to the expansion of irrigation agriculture in the region after 1940 induced the transition from calcite to aragonite precipitation in Alberca and halite infiltration in Rincn. The proxy data indicate a faster response to increased evaporation for Rincn, the lake with the larger maar dimensions, solar radiation receipt and higher conductivity, whereas the smaller, steeper Alberca maar responded rapidly to increased precipitation. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 860 KW - varve chronology KW - tephra KW - element chemistry KW - drought KW - human impact KW - El Nino KW - Mexico Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-432794 SN - 1866-8372 IS - 860 SP - 587 EP - 609 ER - TY - JOUR A1 - Bakke, Jostein A1 - Lie, Øyvind A1 - Heegaard, Einar A1 - Dokken, Trond A1 - Haug, Gerald H. A1 - Birks, Hilary H. A1 - Dulski, Peter A1 - Nilsen, Trygve T1 - Rapid oceanic and atmospheric changes during the Younger Dryas cold period N2 - The Younger Dryas event, which began approximately 12,900 years ago, was a period of rapid cooling in the Northern Hemisphere, driven by large-scale reorganizations of patterns of atmospheric and oceanic circulation(1-3). Environmental changes during this period have been documented by both proxy-based reconstructions(3) and model simulations(4), but there is currently no consensus on the exact mechanisms of onset, stabilization or termination of the Younger Dryas(5-8). Here we present high-resolution records from two sediment cores obtained from Lake Krakenes in western Norway and the Nordic seas. Multiple proxies from Lake Krakenes are indicative of rapid alternations between glacial growth and melting during the later Younger Dryas. Meanwhile, reconstructed sea surface temperature and salinity from the Nordic seas show an alternation between sea-ice cover and the influx of warm, salty North Atlantic waters. We suggest that the influx of warm water enabled the westerly wind systems to drift northward, closer to their present-day positions. The winds thus brought relatively warm maritime air to Northern Europe, resulting in rising temperatures and the melting of glaciers. Subsequent input of this fresh meltwater into the ocean spurred the formation of sea ice, which forced the westerly winds back to the south, cooling Northern Europe. We conclude that rapid alternations between these two states immediately preceded the termination of the Younger Dryas and the permanent transition to an interglacial state. Y1 - 2009 UR - http://www.nature.com/ngeo/index.html U6 - https://doi.org/10.1038/ngeo439 SN - 1752-0894 ER - TY - JOUR A1 - Jaccard, Samuel Laurent A1 - Galbraith, Eric D. A1 - Sigman, Daniel M. A1 - Haug, Gerald H. A1 - Francois, Roger A1 - Pedersen, Thomas F. A1 - Dulski, Peter A1 - Thierstein, Hans R. T1 - Subarctic Pacific evidence for a glacial deepening of the oceanic respired carbon pool N2 - Measurements of benthic foraminiferal cadmium:calcium (Cd/Ca) have indicated that the glacial-interglacial change in deep North Pacific phosphate (PO4) concentration was minimal which has been taken by some, workers as a sign that the biological pump did not store more carbon in the deep glacial ocean. Here we present sedimentary redox- sensitive trace metal records from Ocean Drilling Program (ODP) Site 882 (NW subarctic Pacific, water depth 3244 m) to make inferences about changes in deep North Pacific oxygenation and thus respired carbon storage - over the past 150,000 yr. These observations are complemented with biogenic barium and opal measurements as indicators for past organic carbon export to separate the influences of deep-water oxygen concentration and sedimentary organic carbon respiration on the redox state of the sediment. Our results suggest that the deep subarctic Pacific water mass was deleted in ox en during glacial maxima, though it was not anoxic. We reconcile our results with the existing benthic foraminiferal Cd/Ca by invoking a decrease in the fraction of the deep ocean nutrient inventory that was preformed, rather than remineralized. This change would have corresponded to an increase in the deep Pacific storage of respired carbon, which Would have lowered atmospheric carbon dioxide (CO2) by sequestering CO2 away from the atmosphere and by increasing ocean alkalinity through a transient dissolution event in the deep sea. The magnitude of change in preformed nutrients suggested by the North Pacific data Would have accounted for a majority of the observed decrease in glacial atmospheric PCO2. Y1 - 2009 UR - http://www.sciencedirect.com/science/journal/0012821X U6 - https://doi.org/10.1016/j.epsl.2008.10.017 SN - 0012-821X ER - TY - JOUR A1 - Kienel, Ulrike A1 - Bowen, Sabine Wulf A1 - Byrne, Roger A1 - Park, Jungjae A1 - Boehnel, Harald A1 - Dulski, Peter A1 - Luhr, James F. A1 - Siebert, Lee A1 - Haug, Gerald H. A1 - Negendank, Joerg F. W. T1 - First lacustrine varve chronologies from Mexico : impact of droughts, ENSO and human activity since AD 1840 as recorded in maar sediments from Valle de Santiago N2 - We present varve chronologies for sediments from two maar lakes in the Valle de Santiago region (Central Mexico): Hoya La Alberca (AD 1852-1973) and Hoya Rincn de Parangueo (AD 1839-1943). These are the first varve chronologies for Mexican lakes. The varved sections were anchored with tephras from Colima (1913) and Paricutin (1943/ 1944) and Pb-210 ages. We compare the sequences using the thickness of seasonal laminae and element counts (Al, Si, S, Cl, K, Ti, Mn, Fe, and Sr) determined by micro X-ray fluorescence spectrometry. The formation of the varve sublaminae is attributed to the strongly seasonal climate regime. Limited rainfall and high evaporation rates in winter and spring induce precipitation of carbonates (high Ca, Sr) enriched in C-13 and O-18, whereas rainfall in summer increases organic and clastic input (plagioclase, quartz) with high counts of lithogenic elements (K, Al, Ti, and Si). Eolian input of Ti occurs also in the dry season. Moving correlations (5-yr windows) of the Ca and Ti counts show similar development in both sequences until the 1930s. Positive correlations indicate mixing of allochthonous Ti and autochthonous Ca, while negative correlations indicate their separation in sublaminae. Negative excursions in the correlations correspond with historic and reconstructed droughts, El Nio events, and positive SST anomalies. Based on our data, droughts (3-7 year duration) were severe and centred around the following years: the early 1850s, 1865, 1880, 1895, 1905, 1915 and the late 1920s with continuation into the 1930s. The latter dry period brought both lake systems into a critical state making them susceptible to further drying. Groundwater overexploitation due to the expansion of irrigation agriculture in the region after 1940 induced the transition from calcite to aragonite precipitation in Alberca and halite infiltration in Rincn. The proxy data indicate a faster response to increased evaporation for Rincn, the lake with the larger maar dimensions, solar radiation receipt and higher conductivity, whereas the smaller, steeper Alberca maar responded rapidly to increased precipitation. Y1 - 2009 UR - http://www.springerlink.com/content/100294 U6 - https://doi.org/10.1007/s10933-009-9307-x SN - 0921-2728 ER - TY - JOUR A1 - Prasad, Sushama A1 - Witt, Annette A1 - Kienel, Ulrike A1 - Dulski, Peter A1 - Bauer, Eva A1 - Yancheva, Gergana T1 - The 8.2 ka event : evidence for seasonal differences and the rate of climate change in western Europe N2 - Recent studies have drawn attention to differences in the seasonal impact of the 8.2 ka event, with longer cooler summers and shorter cooler/drier winters. However, there are no data available on the simultaneity or the rate of onset of the seasonal changes in Europe. Based on the microfacies and geochemical analyses of seasonally laminated varved sediments from Holzmaar, we present evidence of differences in duration and onset time of changes in summer temperature and winter rainfall during the 8.2 ka event. Since both summer and winter climate signals are co-registered within a single varve, there can be no ambiguity about the phasing and duration of the signals. Our data show that the onset and withdrawal of the 8.2 ka summer cooling occurred within a year, and that summer rains were reduced or absent during the investigated period. The onset of cooler summers preceded the onset of winter dryness by ca. 28 years. In view of the differences in nature and duration of the impact of the 8.2 ka event we suggest that a clearer definition of the 8.2 ka event (summer cooling or winter cooling/dryness) needs to be developed. Based on regional comparison and available modelling studies we also discuss the roles of solar variability, changes in North Atlantic Thermohaline circulation, and North Atlantic Circulation (NAO) during the period under consideration. Wavelet analyses of seasonal laminae indicates that the longer NAO cycles, linked to changes in the N. Atlantic temperatures, were more frequent during the drier periods. Y1 - 2009 UR - http://www.sciencedirect.com/science/journal/09218181 U6 - https://doi.org/10.1016/j.gloplacha.2009.03.011 SN - 0921-8181 ER - TY - JOUR A1 - Weber, Michael H. A1 - Abu-Ayyash, Khalil A1 - Abueladas, Abdel-Rahman A1 - Agnon, Amotz A1 - Alasonati-Tašárová, Zuzana A1 - Al-Zubi, Hashim A1 - Babeyko, Andrey A1 - Bartov, Yuval A1 - Bauer, Klaus A1 - Becken, Michael A1 - Bedrosian, Paul A. A1 - Ben-Avraham, Zvi A1 - Bock, Günter A1 - Bohnhoff, Marco A1 - Bribach, Jens A1 - Dulski, Peter A1 - Ebbing, Joerg A1 - El-Kelani, Radwan J. A1 - Foerster, Andrea A1 - Förster, Hans-Jürgen A1 - Frieslander, Uri A1 - Garfunkel, Zvi A1 - Götze, Hans-Jürgen A1 - Haak, Volker A1 - Haberland, Christian A1 - Hassouneh, Mohammed A1 - Helwig, Stefan L. A1 - Hofstetter, Alfons A1 - Hoffmann-Rothe, Arne A1 - Jaeckel, Karl-Heinz A1 - Janssen, Christoph A1 - Jaser, Darweesh A1 - Kesten, Dagmar A1 - Khatib, Mohammed Ghiath A1 - Kind, Rainer A1 - Koch, Olaf A1 - Koulakov, Ivan A1 - Laske, Maria Gabi A1 - Maercklin, Nils T1 - Anatomy of the Dead Sea transform from lithospheric to microscopic scale N2 - Fault zones are the locations where motion of tectonic plates, often associated with earthquakes, is accommodated. Despite a rapid increase in the understanding of faults in the last decades, our knowledge of their geometry, petrophysical properties, and controlling processes remains incomplete. The central questions addressed here in our study of the Dead Sea Transform (DST) in the Middle East are as follows: (1) What are the structure and kinematics of a large fault zone? (2) What controls its structure and kinematics? (3) How does the DST compare to other plate boundary fault zones? The DST has accommodated a total of 105 km of left-lateral transform motion between the African and Arabian plates since early Miocene (similar to 20 Ma). The DST segment between the Dead Sea and the Red Sea, called the Arava/Araba Fault (AF), is studied here using a multidisciplinary and multiscale approach from the mu m to the plate tectonic scale. We observe that under the DST a narrow, subvertical zone cuts through crust and lithosphere. First, from west to east the crustal thickness increases smoothly from 26 to 39 km, and a subhorizontal lower crustal reflector is detected east of the AF. Second, several faults exist in the upper crust in a 40 km wide zone centered on the AF, but none have kilometer-size zones of decreased seismic velocities or zones of high electrical conductivities in the upper crust expected for large damage zones. Third, the AF is the main branch of the DST system, even though it has accommodated only a part (up to 60 km) of the overall 105 km of sinistral plate motion. Fourth, the AF acts as a barrier to fluids to a depth of 4 km, and the lithology changes abruptly across it. Fifth, in the top few hundred meters of the AF a locally transpressional regime is observed in a 100-300 m wide zone of deformed and displaced material, bordered by subparallel faults forming a positive flower structure. Other segments of the AF have a transtensional character with small pull-aparts along them. The damage zones of the individual faults are only 5-20 m wide at this depth range. Sixth, two areas on the AF show mesoscale to microscale faulting and veining in limestone sequences with faulting depths between 2 and 5 km. Seventh, fluids in the AF are carried downward into the fault zone. Only a minor fraction of fluids is derived from ascending hydrothermal fluids. However, we found that on the kilometer scale the AF does not act as an important fluid conduit. Most of these findings are corroborated using thermomechanical modeling where shear deformation in the upper crust is localized in one or two major faults; at larger depth, shear deformation occurs in a 20-40 km wide zone with a mechanically weak decoupling zone extending subvertically through the entire lithosphere. Y1 - 2009 UR - http://www.agu.org/journals/rg/ U6 - https://doi.org/10.1029/2008rg000264 SN - 8755-1209 ER -