TY - JOUR A1 - Zühlke, Martin A1 - Riebe, Daniel A1 - Beitz, Toralf A1 - Löhmannsröben, Hans-Gerd A1 - Zenichowski, Karl A1 - Diener, Marc A1 - Linscheid, Michael W. T1 - An electrospray ionization-ion mobility spectrometer as detector for high-performance liquid chromatography JF - European journal of mass spectrometry N2 - The application of electrospray ionization (ESI) ion mobility (IM) spectrometry on the detection end of a high-performance liquid chromatograph has been a subject of study for some time. So far, this method has been limited to low flow rates or has required splitting of the liquid flow. This work presents a novel concept of an ESI source facilitating the stable operation of the spectrometer at flow rates between 10 mu L min(-1) and 1500 mu L min(-1) without flow splitting, advancing the T-cylinder design developed by Kurnin and co-workers. Flow rates eight times faster than previously reported were achieved because of a more efficient dispersion of the liquid at increased electrospray voltages combined with nebulization by a sheath gas. Imaging revealed the spray operation to be in a rotationally symmetric multijet-mode. The novel ESI-IM spectrometer tolerates high water contents (<= 90%) and electrolyte concentrations up to 10 mM, meeting another condition required of high-performance liquid chromatography (HPLC) detectors. Limits of detection of 50 nM for promazine in the positive mode and 1 mu M for 1,3-dinitrobenzene in the negative mode were established. Three mixtures of reduced complexity (five surfactants, four neuroleptics, and two isomers) were separated in the millisecond regime in stand-alone operation of the spectrometer. Separations of two more complex mixtures (five neuroleptics and 13 pesticides) demonstrate the application of the spectrometer as an HPLC detector. The examples illustrate the advantages of the spectrometer over the established diode array detector, in terms of additional IM separation of substances not fully separated in the retention time domain as well as identification of substances based on their characteristic IMs. KW - ESI KW - IMS KW - HPLC KW - spray imaging KW - neuroleptics KW - pesticides KW - surfactants Y1 - 2015 U6 - https://doi.org/10.1255/ejms.1367 SN - 1469-0667 SN - 1751-6838 VL - 21 IS - 3 SP - 391 EP - 402 PB - WeltTrends CY - Sussex ER - TY - JOUR A1 - Zühlke, Martin A1 - Riebe, Daniel A1 - Beitz, Toralf A1 - Löhmannsröben, Hans-Gerd A1 - Andreotti, Sandro A1 - Reinert, Knut A1 - Zenichowski, Karl A1 - Diener, Marc T1 - High-performance liquid chromatography with electrospray ionization ion mobility spectrometry: Characterization, data management, and applications JF - Journal of separation science N2 - The combination of high-performance liquid chromatography and electrospray ionization ion mobility spectrometry facilitates the two-dimensional separation of complex mixtures in the retention and drift time plane. The ion mobility spectrometer presented here was optimized for flow rates customarily used in high-performance liquid chromatography between 100 and 1500 mu L/min. The characterization of the system with respect to such parameters as the peak capacity of each time dimension and of the 2D spectrum was carried out based on a separation of a pesticide mixture containing 24 substances. While the total ion current chromatogram is coarsely resolved, exhibiting coelutions for a number of compounds, all substances can be separately detected in the 2D plane due to the orthogonality of the separations in retention and drift dimensions. Another major advantage of the ion mobility detector is the identification of substances based on their characteristic mobilities. Electrospray ionization allows the detection of substances lacking a chromophore. As an example, the separation of a mixture of 18 amino acids is presented. A software built upon the free mass spectrometry package OpenMS was developed for processing the extensive 2D data. The different processing steps are implemented as separate modules which can be arranged in a graphic workflow facilitating automated processing of data. KW - Amino acids KW - Electrospray ionization KW - Ion mobility spectrometry KW - Pesticides KW - Two-dimensional separations Y1 - 2016 U6 - https://doi.org/10.1002/jssc.201600749 SN - 1615-9306 SN - 1615-9314 VL - 39 SP - 4756 EP - 4764 PB - Wiley-VCH CY - Weinheim ER -