TY - JOUR A1 - Codutti, Agnese A1 - Bente, Klaas A1 - Faivre, Damien A1 - Klumpp, Stefan T1 - Chemotaxis in external fields: Simulations for active magnetic biological matter JF - PLoS Computational Biology : a new community journal N2 - The movement of microswimmers is often described by active Brownian particle models. Here we introduce a variant of these models with several internal states of the swimmer to describe stochastic strategies for directional swimming such as run and tumble or run and reverse that are used by microorganisms for chemotaxis. The model includes a mechanism to generate a directional bias for chemotaxis and interactions with external fields (e.g., gravity, magnetic field, fluid flow) that impose forces or torques on the swimmer. We show how this modified model can be applied to various scenarios: First, the run and tumble motion of E. coli is used to establish a paradigm for chemotaxis and investigate how it is affected by external forces. Then, we study magneto-aerotaxis in magnetotactic bacteria, which is biased not only by an oxygen gradient towards a preferred concentration, but also by magnetic fields, which exert a torque on an intracellular chain of magnets. We study the competition of magnetic alignment with active reorientation and show that the magnetic orientation can improve chemotaxis and thereby provide an advantage to the bacteria, even at rather large inclination angles of the magnetic field relative to the oxygen gradient, a case reminiscent of what is expected for the bacteria at or close to the equator. The highest gain in chemotactic velocity is obtained for run and tumble with a magnetic field parallel to the gradient, but in general a mechanism for reverse motion is necessary to swim against the magnetic field and a run and reverse strategy is more advantageous in the presence of a magnetic torque. This finding is consistent with observations that the dominant mode of directional changes in magnetotactic bacteria is reversal rather than tumbles. Moreover, it provides guidance for the design of future magnetic biohybrid swimmers. Author summary In this paper, we propose a modified Active Brownian particle model to describe bacterial swimming behavior under the influence of external forces and torques, in particular of a magnetic torque. This type of interaction is particularly important for magnetic biohybrids (i.e. motile bacteria coupled to a synthetic magnetic component) and for magnetotactic bacteria (i.e. bacteria with a natural intracellular magnetic chain), which perform chemotaxis to swim along chemical gradients, but are also directed by an external magnetic field. The model allows us to investigate the benefits and disadvantages of such coupling between two different directionality mechanisms. In particular we show that the magnetic torque can speed chemotaxis up in some conditions, while it can hinder it in other cases. In addition to an understanding of the swimming strategies of naturally magnetotactic organisms, the results may guide the design of future biomedical devices. Y1 - 2019 U6 - https://doi.org/10.1371/journal.pcbi.1007548 SN - 1553-734X SN - 1553-7358 VL - 15 IS - 12 PB - PLoS CY - San Fransisco ER - TY - THES A1 - Codutti, Agnese T1 - Behavior of magnetic microswimmers T1 - Verhalten magnetischer Microschwimmer BT - simulations for natural swimmers and synthetic propellers BT - Simulationen von natürlichen Schwimmern und synthetischen Propellern N2 - Microswimmers, i.e. swimmers of micron size experiencing low Reynolds numbers, have received a great deal of attention in the last years, since many applications are envisioned in medicine and bioremediation. A promising field is the one of magnetic swimmers, since magnetism is biocom-patible and could be used to direct or actuate the swimmers. This thesis studies two examples of magnetic microswimmers from a physics point of view. The first system to be studied are magnetic cells, which can be magnetic biohybrids (a swimming cell coupled with a magnetic synthetic component) or magnetotactic bacteria (naturally occurring bacteria that produce an intracellular chain of magnetic crystals). A magnetic cell can passively interact with external magnetic fields, which can be used for direction. The aim of the thesis is to understand how magnetic cells couple this magnetic interaction to their swimming strategies, mainly how they combine it with chemotaxis (the ability to sense external gradient of chemical species and to bias their walk on these gradients). In particular, one open question addresses the advantage given by these magnetic interactions for the magnetotactic bacteria in a natural environment, such as porous sediments. In the thesis, a modified Active Brownian Particle model is used to perform simulations and to reproduce experimental data for different systems such as bacteria swimming in the bulk, in a capillary or in confined geometries. I will show that magnetic fields speed up chemotaxis under special conditions, depending on parameters such as their swimming strategy (run-and-tumble or run-and-reverse), aerotactic strategy (axial or polar), and magnetic fields (intensities and orientations), but it can also hinder bacterial chemotaxis depending on the system. The second example of magnetic microswimmer are rigid magnetic propellers such as helices or random-shaped propellers. These propellers are actuated and directed by an external rotating magnetic field. One open question is how shape and magnetic properties influence the propeller behavior; the goal of this research field is to design the best propeller for a given situation. The aim of the thesis is to propose a simulation method to reproduce the behavior of experimentally-realized propellers and to determine their magnetic properties. The hydrodynamic simulations are based on the use of the mobility matrix. As main result, I propose a method to match the experimental data, while showing that not only shape but also the magnetic properties influence the propellers swimming characteristics. N2 - Die Forschung an Mikroschwimmern oder genauer gesagt an aktiv schwimmenden Mikroorganismen oder Objekten mit niedrigen Reynolds Zahlen, hat in den letzten Jahren wegen ihrer vielfältigen Anwendungen in der Medizin und Bioremediation stark an Bedeutung gewonnen. Besonders vielversprechend ist die Arbeit mit magnetischen Mikroschwimmern, da deren biokompatibler Magnetismus genutzt werden kann um die Schwimmer gezielt zu steuern. In dieser Arbeit werden zwei Beispiele von magnetischen Mikroschwimmern aus physikalischer Sicht untersucht. Das erste Modellsystem hierfür sind magnetische Zellen. Diese können entweder magnetische Biohybride (eine schwimm-Zelle gekoppelt mit einer synthetischen magnetischen Komponente) oder magnetotaktische Bakterien (natürlich vorkommende Bakterien die eine intrazelluläre Kette von magnetischen Kristallen produzieren) sein. Die passive Wechselwirkung der magnetischen Zelle mit einem externen Magnetfeld kann zu deren Steuerung genutzt werden. Das Ziel dieser Arbeit ist es zu verstehen wie magnetische Zellen die magnetische Wechselwirkung mit ihre Schwimmstrategie verknüpfen, oder genauer gesagt, wie sie sie zur Chemotaxis (die Fähigkeit externe chemische Gradienten wahrzunehmen und die Fortbewegungsrichtung daran anzupassen) zu nutzen. Es ist immer noch nicht restlos geklärt worin in der natürlichen Umgebung der magnetischen Bakterien, wie beispielsweise in porösem Sediment, der Vorteil der Wechselwirkung mit dem externen magnetischen Feld liegt. In dieser Arbeit wurde ein modifiziertes „Active Brownian Particle model“ verwendet um mittels Computersimulationen experimentelle Ergebnisse an Bakterien zu reproduzieren, die sich frei, in einer Glaskapillare, oder in anders begrenzten Geometrien bewegen. Ich werde zeigen, dass abhängig von der Schwimmstrategie („run-and-tumble“ oder „runand-reverse“), aerotaktische Strategie (axial oder polar), und der Feldintensität und Orientierung, das magnetische Feld Chemotaxis beschleunigen kann. Abhängig von dem gewählten Modellsystem kann es jedoch auch zu einer Behinderung der Chemotaxis kommen. Das zweite Beispiel für magnetische Mikroschwimmer sind starre (z.B. Helices) oder zufällig geformte magnetische Propeller. Sie werden durch ein externes magnetisches Feld angetrieben und gelenkt. Hierbei stellt sich die Frage wie die Form der Propeller deren Verhalten beeinflusst und wie sie für eine bestimmte Anwendung optimiert werden können. Daher ist es das Ziel dieser Arbeit Simulationsmethoden vorzuschlagen um das experimentell beobachtete Verhalten zu reproduzieren und die magnetischen Eigenschaften der Propeller zu beschreiben. Hierfür wird die Mobilitätsmatrix verwendet um die hydrodynamischen Simulationen zu realisieren. Ein Hauptresultat meiner Arbeit ist eine neue Methode, welche die Simulationen in Einklang mit den experimentellen Resultaten bringt. Hierbei zeigt sich, dass nicht nur die Form sondern insbesondere auch die magnetischen Eigenschaften die Schwimmcharakteristik der Propeller entscheidend beeinflussen. KW - microswimmers KW - magnetism KW - bacteria KW - propellers KW - simulation KW - Microschwimmer KW - Magnetismus KW - Bakterien KW - Propeller KW - Simulationen Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-422976 ER -