TY - JOUR A1 - Thapa, Samudrajit A1 - Lomholt, Michael Andersen A1 - Krog, Jens A1 - Cherstvy, Andrey G. A1 - Metzler, Ralf T1 - Bayesian analysis of single-particle tracking data using the nested-sampling algorithm: maximum-likelihood model selection applied to stochastic-diffusivity data JF - Physical chemistry, chemical physics : PCCP ; a journal of European Chemical Societies N2 - We employ Bayesian statistics using the nested-sampling algorithm to compare and rank multiple models of ergodic diffusion (including anomalous diffusion) as well as to assess their optimal parameters for in silico-generated and real time-series. We focus on the recently-introduced model of Brownian motion with "diffusing diffusivity'-giving rise to widely-observed non-Gaussian displacement statistics-and its comparison to Brownian and fractional Brownian motion, also for the time-series with some measurement noise. We conduct this model-assessment analysis using Bayesian statistics and the nested-sampling algorithm on the level of individual particle trajectories. We evaluate relative model probabilities and compute best-parameter sets for each diffusion model, comparing the estimated parameters to the true ones. We test the performance of the nested-sampling algorithm and its predictive power both for computer-generated (idealised) trajectories as well as for real single-particle-tracking trajectories. Our approach delivers new important insight into the objective selection of the most suitable stochastic model for a given time-series. We also present first model-ranking results in application to experimental data of tracer diffusion in polymer-based hydrogels. Y1 - 2018 U6 - https://doi.org/10.1039/c8cp04043e SN - 1463-9076 SN - 1463-9084 VL - 20 IS - 46 SP - 29018 EP - 29037 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Caetano, Daniel L. Z. A1 - Carvalho, Sidney Jurado de A1 - Metzler, Ralf A1 - Cherstvy, Andrey G. T1 - Critical adsorption of multiple polyelectrolytes onto a nanosphere BT - splitting the adsorption-desorption transition boundary JF - Interface : journal of the Royal Society N2 - Employing extensive Monte Carlo computer simulations, we investigate in detail the properties of multichain adsorption of charged flexible polyelectrolytes (PEs) onto oppositely charged spherical nanoparticles (SNPs). We quantify the conditions of critical adsorption-the phase-separation curve between the adsorbed and desorbed states of the PEs-as a function of the SNP surface-charge density and the concentration of added salt. We study the degree of fluctuations of the PE-SNP electrostatic binding energy, which we use to quantify the emergence of the phase subtransitions, including a series of partially adsorbed PE configurations. We demonstrate how the phase-separation adsorption-desorption boundary shifts and splits into multiple subtransitions at low-salt conditions, thereby generalizing and extending the results for critical adsorption of a single PE onto the SNP. The current findings are relevant for finite concentrations of PEs around the attracting SNP, such as the conditions for PE adsorption onto globular proteins carrying opposite electric charges. KW - nanoparticles KW - polyelectrolytes KW - electrostatics KW - critical adsorption KW - phase-transition boundary Y1 - 2020 U6 - https://doi.org/10.1098/rsif.2020.0199 SN - 1742-5689 SN - 1742-5662 VL - 17 IS - 167 PB - Royal Society CY - London ER - TY - JOUR A1 - Kar, Prathitha A1 - Cherstvy, Andrey G. A1 - Metzler, Ralf T1 - Acceleration of bursty multiprotein target search kinetics on DNA by colocalisation JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - Proteins are capable of locating specific targets on DNA by employing a facilitated diffusion process with intermittent 1D and 3D search steps. Gene colocalisation and coregulation-i.e. the spatial proximity of two communicating genes-is one factor capable of accelerating the target search process along the DNA. We perform Monte Carlo computer simulations and demonstrate the benefits of gene colocalisation for minimising the search time in a model DNA-protein system. We use a simple diffusion model to mimic the search for targets by proteins, produced initially in bursts of multiple proteins and performing the first-passage search on the DNA chain. The behaviour of the mean first-passage times to the target is studied as a function of distance between the initial position of proteins and the DNA target position, as well as versus the concentration of proteins. We also examine the properties of bursty target search kinetics for varying physical-chemical protein-DNA binding affinity. Our findings underline the relevance of colocalisation of production and binding sites for protein search inside biological cells. Y1 - 2017 U6 - https://doi.org/10.1039/c7cp06922g SN - 1463-9076 SN - 1463-9084 VL - 20 IS - 12 SP - 7931 EP - 7946 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Cherstvy, Andrey G. A1 - Metzler, Ralf T1 - Population splitting, trapping, and non-ergodicity in heterogeneous diffusion processes JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - We consider diffusion processes with a spatially varying diffusivity giving rise to anomalous diffusion. Such heterogeneous diffusion processes are analysed for the cases of exponential, power-law, and logarithmic dependencies of the diffusion coefficient on the particle position. Combining analytical approaches with stochastic simulations, we show that the functional form of the space-dependent diffusion coefficient and the initial conditions of the diffusing particles are vital for their statistical and ergodic properties. In all three cases a weak ergodicity breaking between the time and ensemble averaged mean squared displacements is observed. We also demonstrate a population splitting of the time averaged traces into fast and slow diffusers for the case of exponential variation of the diffusivity as well as a particle trapping in the case of the logarithmic diffusivity. Our analysis is complemented by the quantitative study of the space coverage, the diffusive spreading of the probability density, as well as the survival probability. Y1 - 2013 U6 - https://doi.org/10.1039/c3cp53056f SN - 1463-9076 SN - 1463-9084 VL - 15 IS - 46 SP - 20220 EP - 20235 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Cherstvy, Andrey G. A1 - Teif, V. B. T1 - Structure-driven homology pairing of chromatin fibers the role of electrostatics and protein-induced bridging JF - Journal of biological physics : emphasizing physical principles in biological research ; an international journal for the formulation and application of mathematical models in the biological sciences N2 - Chromatin domains formed in vivo are characterized by different types of 3D organization of interconnected nucleosomes and architectural proteins. Here, we quantitatively test a hypothesis that the similarities in the structure of chromatin fibers (which we call "structural homology") can affect their mutual electrostatic and protein-mediated bridging interactions. For example, highly repetitive DNA sequences in heterochromatic regions can position nucleosomes so that preferred inter-nucleosomal distances are preserved on the surfaces of neighboring fibers. On the contrary, the segments of chromatin fiber formed on unrelated DNA sequences have different geometrical parameters and lack structural complementarity pivotal for stable association and cohesion. Furthermore, specific functional elements such as insulator regions, transcription start and termination sites, and replication origins are characterized by strong nucleosome ordering that might induce structure-driven iterations of chromatin fibers. We propose that shape-specific protein-bridging interactions facilitate long-range pairing of chromatin fragments, while for closely-juxtaposed fibers electrostatic forces can in addition yield fine-tuned structure-specific recognition and pairing. These pairing effects can account for some features observed for mitotic and inter-phase chromatins. KW - Chromatin pairing KW - Homology KW - Electrostatics KW - Shape recognition KW - Long-range bridging Y1 - 2013 U6 - https://doi.org/10.1007/s10867-012-9294-4 SN - 0092-0606 SN - 1573-0689 VL - 39 IS - 3 SP - 363 EP - 385 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Poghossian, A. A1 - Weil, M. A1 - Cherstvy, Andrey G. A1 - Schöning, M. J. T1 - Electrical monitoring of polyelectrolyte multilayer formation by means of capacitive field-effect devices JF - Analytical & bioanalytical chemistry N2 - The semiconductor field-effect platform represents a powerful tool for detecting the adsorption and binding of charged macromolecules with direct electrical readout. In this work, a capacitive electrolyte-insulator-semiconductor (EIS) field-effect sensor consisting of an Al-p-Si-SiO2 structure has been applied for real-time in situ electrical monitoring of the layer-by-layer formation of polyelectrolyte (PE) multilayers (PEM). The PEMs were deposited directly onto the SiO2 surface without any precursor layer or drying procedures. Anionic poly(sodium 4-styrene sulfonate) and cationic weak polyelectrolyte poly(allylamine hydrochloride) have been chosen as a model system. The effect of the ionic strength of the solution, polyelectrolyte concentration, number and polarity of the PE layers on the characteristics of the PEM-modified EIS sensors have been studied by means of capacitance-voltage and constant-capacitance methods. In addition, the thickness, surface morphology, roughness and wettabilityof the PE mono- and multilayers have been characterised by ellipsometry, atomic force microscopy and water contact-angle methods, respectively. To explain potential oscillations on the gate surface and signal behaviour of the capacitive field-effect EIS sensor modified with a PEM, a simplified electrostatic model that takes into account the reduced electrostatic screening of PE charges by mobile ions within the PEM has been proposed and discussed. KW - Field-effect KW - Capacitive sensor KW - Polyelectrolyte multilayer KW - Electrical monitoring KW - ConCap Y1 - 2013 U6 - https://doi.org/10.1007/s00216-013-6951-9 SN - 1618-2642 VL - 405 IS - 20 SP - 6425 EP - 6436 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Cherstvy, Andrey G. A1 - Chechkin, Aleksei V. A1 - Metzler, Ralf T1 - Anomalous diffusion and ergodicity breaking in heterogeneous diffusion processes JF - New journal of physics : the open-access journal for physics N2 - We demonstrate the non-ergodicity of a simple Markovian stochastic process with space-dependent diffusion coefficient D(x). For power-law forms D(x) similar or equal to vertical bar x vertical bar(alpha), this process yields anomalous diffusion of the form < x(2)(t)> similar or equal to t(2/(2-alpha)). Interestingly, in both the sub- and superdiffusive regimes we observe weak ergodicity breaking: the scaling of the time-averaged mean-squared displacement <(delta(2)(Delta))over bar> remains linear in the lag time Delta and thus differs from the corresponding ensemble average < x(2)(t)>. We analyse the non-ergodic behaviour of this process in terms of the time-averaged mean- squared displacement (delta(2)) over bar and its random features, i.e. the statistical distribution of (delta(2)) over bar and the ergodicity breaking parameters. The heterogeneous diffusion model represents an alternative approach to non- ergodic, anomalous diffusion that might be particularly relevant for diffusion in heterogeneous media. Y1 - 2013 U6 - https://doi.org/10.1088/1367-2630/15/8/083039 SN - 1367-2630 VL - 15 IS - 15 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Cherstvy, Andrey G. T1 - Detection of DNA hybridization by field-effect DNA-based biosensors - mechanisms of signal generation and open questions JF - Biosensors and bioelectronics : the principal international journal devoted to research, design development and application of biosensors and bioelectronics N2 - We model theoretically the electrostatic effects taking place upon DNA hybridization in dense DNA arrays immobilized on a layer of Au nano-particles deposited on the surface of a field-effect-based DNA capacitive biosensor. We consider the influence of separation of a charged analyte from the sensor surface and the salinity of electrolyte solution, in the framework of both linear and nonlinear Poisson-Boltzmann theories. The latter predicts a substantially weaker sensor signals due to electrostatic saturation effects that is the main conclusion of this paper. We analyze how different physical parameters of dense DNA brushes affect the magnitude of hybridization signals. The list includes the fraction of DNA charge neutralization, the length and spatial conformations of adsorbed DNA molecules, as well as the discreteness of DNA charges. We also examine the effect of Donnan ionic equilibrium in DNA lattices on the sensor response. The validity of theoretical models is contrasted against recent experimental observations on detection of DNA hybridization via its intrinsic electric charge. The sensitivity of such biochemical sensing devices, their detection limit, and DNA hybridization efficiency are briefly discussed in the end. KW - DNA hybridization KW - Au nano-particle KW - Bio-electrochemical sensing KW - Electrostatic screening Y1 - 2013 U6 - https://doi.org/10.1016/j.bios.2013.02.026 SN - 0956-5663 VL - 46 IS - 2 SP - 162 EP - 170 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Winkler, Roland G. A1 - Cherstvy, Andrey G. ED - Muller, M. T1 - Strong and weak polyelectrolyte adsorption onto oppositely charged curved surfaces JF - Advances in polymer science JF - Advances in Polymer Science N2 - Polyelectrolytes are macromolecules composed of charged monomers and exhibit unique properties due to the interplay of their flexibility and electrostatic interactions. In solution, they are attracted to oppositely charged surfaces and interfaces and exhibit a transition to an adsorbed state when certain conditions are met concerning the charge densities of the polymer and surface and the properties of the solution. In this review, we discuss two limiting cases for adsorption of flexible polyelectrolytes on curved surfaces: weak and strong adsorption. In the first case, adsorption is strongly influenced by the entropic degrees of freedom of a flexible polyelectrolyte. By contrast, in the strong adsorption limit, electrostatic interactions dominate, which leads to particular adsorption patterns, specifically on spherical surfaces. We discuss the corresponding theoretical approaches, applying a mean-field description for the polymer and the polymer-surface interaction. For weak adsorption, we discuss the critical adsorption behavior by exactly solvable models for planar and spherical geometries and a generic approximation scheme, which is additionally applied to cylindrical surfaces. For strong adsorption, we investigate various polyelectrolyte patterns on cylinders and spheres and evaluate their stability. The results are discussed in the light of experimental results, mostly of DNA adsorption experiments. Y1 - 2014 SN - 978-3-642-40734-5; 978-3-642-40733-8 U6 - https://doi.org/10.1007/12_2012_183 SN - 0065-3195 VL - 255 SP - 1 EP - 56 PB - Springer CY - Berlin ER - TY - JOUR A1 - de Carvalho, Sidney J. A1 - Metzler, Ralf A1 - Cherstvy, Andrey G. T1 - Critical adsorption of polyelectrolytes onto charged Janus nanospheres JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - Based on extensive Monte Carlo simulations and analytical considerations we study the electrostatically driven adsorption of flexible polyelectrolyte chains onto charged Janus nanospheres. These net-neutral colloids are composed of two equally but oppositely charged hemispheres. The critical binding conditions for polyelectrolyte chains are analysed as function of the radius of the Janus particle and its surface charge density, as well as the salt concentration in the ambient solution. Specifically for the adsorption of finite-length polyelectrolyte chains onto Janus nanoparticles, we demonstrate that the critical adsorption conditions drastically differ when the size of the Janus particle or the screening length of the electrolyte are varied. We compare the scaling laws obtained for the adsorption-desorption threshold to the known results for uniformly charged spherical particles, observing significant disparities. We also contrast the changes to the polyelectrolyte chain conformations close to the surface of the Janus nanoparticles as compared to those for simple spherical particles. Finally, we discuss experimentally relevant physicochemical systems for which our simulations results may become important. In particular, we observe similar trends with polyelectrolyte complexation with oppositely but heterogeneously charged proteins. Y1 - 2014 U6 - https://doi.org/10.1039/c4cp02207f SN - 1463-9076 SN - 1463-9084 VL - 16 IS - 29 SP - 15539 EP - 15550 PB - Royal Society of Chemistry CY - Cambridge ER -