TY - JOUR A1 - Wong, Kevin A1 - Mason, Emily A1 - Brune, Sascha A1 - East, Madison A1 - Edmonds, Marie A1 - Zahirovic, Sabin T1 - Deep Carbon Cycling Over the Past 200 Million Years: A Review of Fluxes in Different Tectonic Settings JF - Frontiers in Earth Science KW - deep carbon cycle KW - carbonate assimilation KW - solid Earth degassing KW - plate reconstructions KW - carbon dioxide KW - subduction zone Y1 - 2019 U6 - https://doi.org/10.3389/feart.2019.00263 SN - 2296-6463 VL - 7 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Ulvrova, Martina M. A1 - Brune, Sascha A1 - Williams, Simon E. T1 - Breakup Without Borders BT - How Continents Speed Up and Slow Down During Rifting JF - Geophysical research letters N2 - Relative plate motions during continental rifting result from the interplay of local with far-field forces. Here we study the dynamics of rifting and breakup using large-scale numerical simulations of mantle convection with self-consistent evolution of plate boundaries. We show that continental separation follows a characteristic evolution with four distinctive phases: (1) an initial slow rifting phase with low divergence velocities and maximum tensional stresses, (2) a synrift speed-up phase featuring an abrupt increase of extension rate with a simultaneous drop of tensional stress, (3) the breakup phase with inception of fast sea-floor spreading, and (4) a deceleration phase occurring in most but not all models where extensional velocities decrease. We find that the speed-up during rifting is compensated by subduction acceleration or subduction initiation even in distant localities. Our study illustrates new links between local rift dynamics, plate motions, and subduction kinematics during times of continental separation. Y1 - 2018 U6 - https://doi.org/10.1029/2018GL080387 SN - 0094-8276 SN - 1944-8007 VL - 46 IS - 3 SP - 1338 EP - 1347 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Rubey, Michael A1 - Brune, Sascha A1 - Heine, Christian A1 - Davies, D. Rhodri A1 - Williams, Simon E. A1 - Müller, R. Dietmar T1 - role of subducted slabs JF - Solid earth Y1 - 2017 U6 - https://doi.org/10.5194/se-8-899-2017 SN - 1869-9510 SN - 1869-9529 VL - 8 SP - 899 EP - 919 PB - Copernicus CY - Göttingen ER - TY - GEN A1 - Rubey, Michael A1 - Brune, Sascha A1 - Heine, Christian A1 - Davies, D. Rhodri A1 - Williams, Simon E. A1 - Müller, R. Dietmar T1 - Global patterns in Earth’s dynamic topography since the Jurassic BT - the role of subducted slabs T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - We evaluate the spatial and temporal evolution of Earth's long-wavelength surface dynamic topography since the Jurassic using a series of high-resolution global mantle convection models. These models are Earth-like in terms of convective vigour, thermal structure, surface heat-flux and the geographic distribution of heterogeneity. The models generate a degree-2-dominated spectrum of dynamic topography with negative amplitudes above subducted slabs (i.e. circum-Pacific regions and southern Eurasia) and positive amplitudes elsewhere (i.e. Africa, north-western Eurasia and the central Pacific). Model predictions are compared with published observations and subsidence patterns from well data, both globally and for the Australian and southern African regions. We find that our models reproduce the long-wavelength component of these observations, although observed smaller-scale variations are not reproduced. We subsequently define "geodynamic rules" for how different surface tectonic settings are affected by mantle processes: (i) locations in the vicinity of a subduction zone show large negative dynamic topography amplitudes; (ii) regions far away from convergent margins feature long-term positive dynamic topography; and (iii) rapid variations in dynamic support occur along the margins of overriding plates (e.g. the western US) and at points located on a plate that rapidly approaches a subduction zone (e.g. India and the Arabia Peninsula). Our models provide a predictive quantitative framework linking mantle convection with plate tectonics and sedimentary basin evolution, thus improving our understanding of how subduction and mantle convection affect the spatio-temporal evolution of basin architecture. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 623 KW - spherical mantle convection KW - southern African plateau KW - vertical motion KW - sea-level KW - seismic tomography KW - models KW - surface KW - gravity KW - lithosphere KW - Australia Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-418241 SN - 1866-8372 IS - 623 SP - 899 EP - 919 ER - TY - JOUR A1 - Richter, Maximilian A1 - Brune, Sascha A1 - Riedl, Simon A1 - Glerum, Anne A1 - Neuharth, Derek A1 - Strecker, Manfred T1 - Controls on asymmetric rift dynamics BT - Numerical modeling of strain localization and fault evolution in the Kenya Rift JF - Tectonics / American Geophysical Union, AGU ; European Geophysical Society, EGS N2 - Complex, time-dependent, and asymmetric rift geometries are observed throughout the East African Rift System (EARS) and are well documented, for instance, in the Kenya Rift. To unravel asymmetric rifting processes in this region, we conduct 2D geodynamic models. We use the finite element software ASPECT employing visco-plastic rheologies, mesh-refinement, distributed random noise seeding, and a free surface. In contrast to many previous numerical modeling studies that aimed at understanding final rifted margin symmetry, we explicitly focus on initial rifting stages to assess geodynamic controls on strain localization and fault evolution. We thereby link to geological and geophysical observations from the Southern and Central Kenya Rift. Our models suggest a three-stage early rift evolution that dynamically bridges previously inferred fault-configuration phases of the eastern EARS branch: (1) accommodation of initial strain localization by a single border fault and flexure of the hanging-wall crust, (2) faulting in the hanging-wall and increasing upper-crustal faulting in the rift-basin center, and (3) loss of pronounced early stage asymmetry prior to basinward localization of deformation. This evolution may provide a template for understanding early extensional faulting in other branches of the East African Rift and in asymmetric rifts worldwide. By modifying the initial random noise distribution that approximates small-scale tectonic inheritance, we show that a spectrum of first-order fault configurations with variable symmetry can be produced in models with an otherwise identical setup. This approach sheds new light on along-strike rift variability controls in active asymmetric rifts and proximal rifted margins. KW - asymmetric rifting KW - rift variability KW - numerical model KW - structural KW - inheritance KW - Kenya Rift Y1 - 2021 U6 - https://doi.org/10.1029/2020TC006553 SN - 0278-7407 SN - 1944-9194 VL - 40 IS - 5 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Rajaonarison, Tahiry A. A1 - Stamps, D. Sarah A1 - Fishwick, Stewart A1 - Brune, Sascha A1 - Glerum, Anne A1 - Hu, Jiashun T1 - Numerical modeling of mantle flow beneath Madagascar to constrain upper mantle rheology beneath continental regions JF - Journal of geophysical research : Solid earth N2 - Over the past few decades, azimuthal seismic anisotropy measurements have been widely used proxy to study past and present-day deformation of the lithosphere and to characterize convection in the mantle. Beneath continental regions, distinguishing between shallow and deep sources of anisotropy remains difficult due to poor depth constraints of measurements and a lack of regional-scale geodynamic modeling. Here, we constrain the sources of seismic anisotropy beneath Madagascar where a complex pattern cannot be explained by a single process such as absolute plate motion, global mantle flow, or geology. We test the hypotheses that either Edge-Driven Convection (EDC) or mantle flow derived from mantle wind interactions with lithospheric topography is the dominant source of anisotropy beneath Madagascar. We, therefore, simulate two sets of mantle convection models using regional-scale 3-D computational modeling. We then calculate Lattice Preferred Orientation that develops along pathlines of the mantle flow models and use them to calculate synthetic splitting parameters. Comparison of predicted with observed seismic anisotropy shows a good fit in northern and southern Madagascar for the EDC model, but the mantle wind case only fits well in northern Madagascar. This result suggests the dominant control of the measured anisotropy may be from EDC, but the role of localized fossil anisotropy in narrow shear zones cannot be ruled out in southern Madagascar. Our results suggest that the asthenosphere beneath northern and southern Madagascar is dominated by dislocation creep. Dislocation creep rheology may be dominant in the upper asthenosphere beneath other regions of continental lithosphere. KW - seismic anisotropy KW - edge-driven convection KW - mantle flow modeling KW - lattice preferred orientations KW - lithosphere-mantle wind interactions KW - splitting parameters Y1 - 2019 U6 - https://doi.org/10.1029/2019JB018560 SN - 2169-9313 SN - 2169-9356 VL - 125 IS - 2 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Neuharth, Derek A1 - Brune, Sascha A1 - Wrona, Thilo A1 - Glerum, Anne A1 - Braun, Jean A1 - Yuan, Xiaoping T1 - Evolution of rift systems and their fault networks in response to surface processes JF - Tectonics N2 - Continental rifting is responsible for the generation of major sedimentary basins, both during rift inception and during the formation of rifted continental margins. Geophysical and field studies revealed that rifts feature complex networks of normal faults but the factors controlling fault network properties and their evolution are still matter of debate. Here, we employ high-resolution 2D geodynamic models (ASPECT) including two-way coupling to a surface processes (SP) code (FastScape) to conduct 12 models of major rift types that are exposed to various degrees of erosion and sedimentation. We further present a novel quantitative fault analysis toolbox (Fatbox), which allows us to isolate fault growth patterns, the number of faults, and their length and displacement throughout rift history. Our analysis reveals that rift fault networks may evolve through five major phases: (a) distributed deformation and coalescence, (b) fault system growth, (c) fault system decline and basinward localization, (d) rift migration, and (e) breakup. These phases can be correlated to distinct rifted margin domains. Models of asymmetric rifting suggest rift migration is facilitated through both ductile and brittle deformation within a weak exhumation channel that rotates subhorizontally and remains active at low angles. In sedimentation-starved settings, this channel satisfies the conditions for serpentinization. We find that SP are not only able to enhance strain localization and to increase fault longevity but that they also reduce the total length of the fault system, prolong rift phases and delay continental breakup. KW - rifts KW - fault network KW - surface processes KW - geodynamics Y1 - 2022 U6 - https://doi.org/10.1029/2021TC007166 SN - 0278-7407 SN - 1944-9194 VL - 41 IS - 3 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Neuharth, Derek A1 - Brune, Sascha A1 - Glerum, Anne A1 - Morley, Chris K. A1 - Yuan, Xiaoping A1 - Braun, Jean T1 - Flexural strike-slip basins JF - Geology : a venture in earth science reporting / the Geological Society of America N2 - Strike-slip faults are classically associated with pull-apart basins where continental crust is thinned between two laterally offset fault segments. We propose a subsidence mechanism to explain the formation of a new type of basin where no substantial segment offset or synstrike-slip thinning is observed. Such "flexural strike-slip basins" form due to a sediment load creating accommodation space by bending the lithosphere. We use a two-way coupling between the geodynamic code ASPECT and surface-processes code FastScape to show that flexural strike-slip basins emerge if sediment is deposited on thin lithosphere close to a strike slip fault. These conditions were met at the Andaman Basin Central fault (Andaman Sea, Indian Ocean), where seismic reflection data provide evidence of a laterally extensive flexural basin with a depocenter located parallel to the strike-slip fault trace. Y1 - 2021 U6 - https://doi.org/10.1130/G49351.1 SN - 0091-7613 SN - 1943-2682 VL - 50 IS - 3 SP - 361 EP - 365 PB - American Institute of Physics CY - Boulder ER - TY - JOUR A1 - Nardini, Livia A1 - Rybacki, Erik A1 - Döhmann, Maximilian J.E.A. A1 - Morales, Luiz F.G. A1 - Brune, Sascha A1 - Dresen, Georg T1 - High-temperature shear zone formation in Carrara marble BT - The effect of loading conditions JF - Tectonophysics N2 - Rock deformation at depths in the Earth’s crust is often localized in high temperature shear zones occurring at different scales in a variety of lithologies. The presence of material heterogeneities is known to trigger shear zone development, but the mechanisms controlling initiation and evolution of localization are not fully understood. To investigate the effect of loading conditions on shear zone nucleation along heterogeneities, we performed torsion experiments under constant twist rate (CTR) and constant torque (CT) conditions in a Paterson-type deformation apparatus. The sample assemblage consisted of cylindrical Carrara marble specimens containing a thin plate of Solnhofen limestone perpendicular to the cylinder’s longitudinal axis. Under experimental conditions (900 °C, 400 MPa confining pressure), samples were plastically deformed and limestone is about 9 times weaker than marble, acting as a weak inclusion in a strong matrix. CTR experiments were performed at maximum bulk shear strain rates of ~ 2*10-4s-1, yielding peak shear stresses of ~ 20 MPa. CT tests were conducted at shear stresses of ~ 20 MPa resulting in bulk shear strain rates of 1-4*10-4s-1. Experiments were terminated at maximum bulk shear strains of ~ 0.3 and 1.0.Strain was localized within the Carrara marble in front of the inclusion in an area of strongly deformed grains and intense grain size reduction. Locally, evidences for coexisting brittle deformation are also observed regardless of the imposed loading conditions. The local shear strain at the inclusion tipis up to 30 times higher than the strain in the adjacent host rock, rapidly dropping to 5times higher at larger distance from the inclusion. At both investigated bulk strains, the evolution of microstructural and textural parameters is independent of loading conditions. Ourresults suggest that loading conditions do not significantly affect material heterogeneity-induced strain localization during its nucleation and transient stages. KW - Shear zones KW - localization KW - marble KW - torsion KW - loading conditions Y1 - 2018 U6 - https://doi.org/10.1016/j.tecto.2018.10.022 SN - 0040-1951 VL - 749 SP - 120 EP - 139 PB - Elsevier CY - Amsterdam [u.a.] ER - TY - JOUR A1 - Naliboff, John B. A1 - Glerum, Anne A1 - Brune, Sascha A1 - Péron-Pinvidic, G. A1 - Wrona, Thilo T1 - Development of 3-D rift heterogeneity through fault network evolution JF - Geophysical Research Letters N2 - Observations of rift and rifted margin architecture suggest that significant spatial and temporal structural heterogeneity develops during the multiphase evolution of continental rifting. Inheritance is often invoked to explain this heterogeneity, such as preexisting anisotropies in rock composition, rheology, and deformation. Here, we use high-resolution 3-D thermal-mechanical numerical models of continental extension to demonstrate that rift-parallel heterogeneity may develop solely through fault network evolution during the transition from distributed to localized deformation. In our models, the initial phase of distributed normal faulting is seeded through randomized initial strength perturbations in an otherwise laterally homogeneous lithosphere extending at a constant rate. Continued extension localizes deformation onto lithosphere-scale faults, which are laterally offset by tens of km and discontinuous along-strike. These results demonstrate that rift- and margin-parallel heterogeneity of large-scale fault patterns may in-part be a natural byproduct of fault network coalescence. KW - magma-poor KW - continental lithosphere KW - extension KW - insights KW - margins KW - architecture KW - systems KW - models KW - sea KW - reactivation Y1 - 2019 VL - 47 IS - 13 PB - John Wiley & Sons, Inc. CY - New Jersey ER -