TY - JOUR A1 - Yildirim, Cengiz A1 - Schildgen, Taylor F. A1 - Echtler, Helmut Peter A1 - Melnick, Daniel A1 - Bookhagen, Bodo A1 - Ciner, T. Attila A1 - Niedermann, Samuel A1 - Merchel, Silke A1 - Martschini, Martin A1 - Steier, Peter A1 - Strecker, Manfred T1 - Tectonic implications of fluvial incision and pediment deformation at the northern margin of the Central Anatolian Plateau based on multiple cosmogenic nuclides JF - Tectonics N2 - We document Quaternary fluvial incision driven by fault-controlled surface deformation in the inverted intermontane Gökirmak Basin in the Central Pontide mountains along the northern margin of the Central Anatolian Plateau. In-situ-produced Be-10, Ne-21, and Cl-36 concentrations from gravel-covered fluvial terraces and pediment surfaces along the trunk stream of the basin (the Gökirmak River) yield model exposure ages ranging from 71ka to 34645ka and average fluvial incision rates over the past similar to 350ka of 0.280.01mm a(-1). Similarities between river incision rates and coastal uplift rates at the Black Sea coast suggest that regional uplift is responsible for the river incision. Model exposure ages of deformed pediment surfaces along tributaries of the trunk stream range from 605ka to 110 +/- 10ka, demonstrating that the thrust faults responsible for pediment deformation were active after those times and were likely active earlier as well as explaining the topographic relief of the region. Together, our data demonstrate cumulative incision that is linked to active internal shortening and uplift of similar to 0.3mm a(-1) in the Central Pontide orogenic wedge, which may ultimately contribute to the lateral growth of the northern Anatolian Plateau. KW - Tectonic Geomorphology KW - Fluvial Incision KW - Surface Exposure Age KW - Uplift Rate Y1 - 2013 U6 - https://doi.org/10.1002/tect.20066 SN - 0278-7407 SN - 1944-9194 VL - 32 IS - 5 SP - 1107 EP - 1120 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Schildgen, Taylor F. A1 - Cosentino, D. A1 - Bookhagen, Bodo A1 - Niedermann, Samuel A1 - Yildirim, C. A1 - Echtler, Helmut Peter A1 - Wittmann, Hella A1 - Strecker, Manfred T1 - Multi-phased uplift of the southern margin of the Central Anatolian plateau, Turkey a record of tectonic and upper mantle processes JF - Earth & planetary science letters N2 - Uplifted Neogene marine sediments and Quaternary fluvial terraces in the Mut Basin, southern Turkey, reveal a detailed history of surface uplift along the southern margin of the Central Anatolian plateau from the Late Miocene to the present. New surface exposure ages (Be-10, Al-26, and Ne-21) of gravels capping fluvial strath terraces located between 28 and 135 m above the Goksu River in the Mut Basin yield ages ranging from ca. 25 to 130 ka, corresponding to an average incision rate of 0.52 to 0.67 mm/yr. Published biostratigraphic data combined with new interpretations of the fossil assemblages from uplifted marine sediments reveal average uplift rates of 0.25 to 0.37 mm/yr since Late Miocene time (starting between 8 and 5.45 Ma), and 0.72 to 0.74 mm/yr after 1.66 to 1.62 Ma. Together with the terrace abandonment ages, the data imply 0.6 to 0.7 mm/yr uplift rates from 1.6 Ma to the present. The different post-Late Miocene and post-1.6 Ma uplift rates can imply increasing uplift rates through time, or multi-phased uplift with slow uplift or subsidence in between. Longitudinal profiles of rivers in the upper catchment of the Mut and Ermenek basins show no apparent lithologic or fault control on some knickpoints that occur at 1.2 to 1.5 km elevation, implying a transient response to a change in uplift rates. Projections of graded upper relict channel segments to the modern outlet, together with constraints from uplifted marine sediments, show that a slower incision/uplift rate of 0.1 to 0.2 mm/yr preceded the 0.7 mm/yr uplift rate. The river morphology and profile projections therefore reflect multi-phased uplift of the plateau margin, rather than steadily increasing uplift rates. Multi-phased uplift can be explained by lithospheric slab break-off and possibly also the arrival of the Eratosthenes Seamount at the collision zone south of Cyprus. KW - Central Anatolian plateau KW - uplift KW - fluvial strath terraces KW - cosmogenic nuclides KW - biostratigraphy KW - channel projection Y1 - 2012 U6 - https://doi.org/10.1016/j.epsl.2011.12.003 SN - 0012-821X VL - 317 SP - 85 EP - 95 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Montero-Lopez, Carolina A1 - Strecker, Manfred A1 - Schildgen, Taylor F. A1 - Hongn, Fernando D. A1 - Guzman, Silvina A1 - Bookhagen, Bodo A1 - Sudo, Masafumi T1 - Local high relief at the southern margin of the Andean plateau by 9 Ma: evidence from ignimbritic valley fills and river incision JF - Terra nova N2 - A valley-filling ignimbrite re-exposed through subsequent river incision at the southern margin of the Andean (Puna) plateau preserves pristine geological evidence of pre-late Miocene palaeotopography in the north western Argentine Andes. Our new Ar-40/(39) Ar dating of the Las Papas Ignimbrites yields a plateau age of 9.24 +/- 0.03 Ma, indicating valley-relief and orographic-barrier conditions comparable to the present-day. A later infill of Plio-Pleistocene coarse conglomerates has been linked to wetter conditions, but resulted in no additional net incision of the Las Papas valley, considering that the base of the ignimbrite remains unexposed in the valley bottom. Our observations indicate that at least 550 m of local plateau margin relief (and likely > 2 km) existed by 9 Ma at the southern Puna margin, which likely aided the efficiency of the orographic barrier to rainfall along the eastern and south eastern flanks of the Puna and causes aridity in the plateau interior. Y1 - 2014 U6 - https://doi.org/10.1111/ter.12120 SN - 0954-4879 SN - 1365-3121 VL - 26 IS - 6 SP - 454 EP - 460 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Schildgen, Taylor F. A1 - Robinson, Ruth A. J. A1 - Savi, Sara A1 - Phillips, William M. A1 - Spencer, Joel Q. G. A1 - Bookhagen, Bodo A1 - Scherler, Dirk A1 - Tofelde, Stefanie A1 - Alonso, Ricardo N. A1 - Kubik, Peter W. A1 - Binnie, Steven A. A1 - Strecker, Manfred T1 - Landscape response to late Pleistocene climate change in NW Argentina: Sediment flux modulated by basin geometry and connectivity JF - Journal of geophysical research : Earth surface N2 - Fluvial fill terraces preserve sedimentary archives of landscape responses to climate change, typically over millennial timescales. In the Humahuaca Basin of NW Argentina (Eastern Cordillera, southern Central Andes), our 29 new optically stimulated luminescence ages of late Pleistocene fill terrace sediments demonstrate that the timing of past river aggradation occurred over different intervals on the western and eastern sides of the valley, despite their similar bedrock lithology, mean slopes, and precipitation. In the west, aggradation coincided with periods of increasing precipitation, while in the east, aggradation coincided with decreasing precipitation or more variable conditions. Erosion rates and grain size dependencies in our cosmogenic Be-10 analyses of modern and fill terrace sediments reveal an increased importance of landsliding compared to today on the west side during aggradation, but of similar importance during aggradation on the east side. Differences in the timing of aggradation and the Be-10 data likely result from differences in valley geometry, which causes sediment to be temporarily stored in perched basins on the east side. It appears as if periods of increasing precipitation triggered landslides throughout the region, which induced aggradation in the west, but blockage of the narrow bedrock gorges downstream from the perched basins in the east. As such, basin geometry and fluvial connectivity appear to strongly influence the timing of sediment movement through the system. For larger basins that integrate subbasins with differing geometries or degrees of connectivity (like Humahuaca), sedimentary responses to climate forcing are likely attenuated. KW - berylium-10 KW - optically stimulated luminescence KW - Humahuaca Basin KW - South American Monsoon System KW - fluvial terraces KW - landscape connectivity Y1 - 2016 U6 - https://doi.org/10.1002/2015JF003607 SN - 2169-9003 SN - 2169-9011 VL - 121 SP - 392 EP - 414 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Dey, Saptarshi A1 - Thiede, Rasmus Christoph A1 - Schildgen, Taylor F. A1 - Wittmann, Hella A1 - Bookhagen, Bodo A1 - Scherler, Dirk A1 - Strecker, Manfred T1 - Holocene internal shortening within the northwest Sub-Himalaya: Out-of-sequence faulting of the Jwalamukhi Thrust, India JF - Tectonics N2 - The southernmost thrust of the Himalayan orogenic wedge that separates the foreland from the orogen, the Main Frontal Thrust, is thought to accommodate most of the ongoing crustal shortening in the Sub-Himalaya. Steepened longitudinal river profile segments, terrace offsets, and back-tilted fluvial terraces within the Kangra reentrant of the NW Sub-Himalaya suggest Holocene activity of the Jwalamukhi Thrust (JMT) and other thrust faults that may be associated with strain partitioning along the toe of the Himalayan wedge. To assess the shortening accommodated by the JMT, we combine morphometric terrain analyses with in situ Be-10-based surface-exposure dating of the deformed terraces. Incision into upper Pleistocene sediments within the Kangra Basin created two late Pleistocene terrace levels (T1 and T2). Subsequent early Holocene aggradation shortly before similar to 10ka was followed by episodic reincision, which created four cut-and-fill terrace levels, the oldest of which (T3) was formed at 10.10.9ka. A vertical offset of 445m of terrace T3 across the JMT indicates a shortening rate of 5.60.8 to 7.51.1mma(-1) over the last similar to 10ka. This result suggests that thrusting along the JMT accommodates 40-60% of the total Sub-Himalayan shortening in the Kangra reentrant over the Holocene. We speculate that this out-of-sequence shortening may have been triggered or at least enhanced by late Pleistocene and Holocene erosion of sediments from the Kangra Basin. KW - fluvial terrace KW - cosmogenic nuclides KW - steepness index KW - Jwalamukhi Thrust KW - shortening KW - orogenic wedge Y1 - 2016 U6 - https://doi.org/10.1002/2015TC004002 SN - 0278-7407 SN - 1944-9194 VL - 35 SP - 2677 EP - 2697 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Acosta, Veronica Torres A1 - Schildgen, Taylor F. A1 - Clarke, Brian A. A1 - Scherler, Dirk A1 - Bookhagen, Bodo A1 - Wittmann, Hella A1 - von Blanckenburg, Friedhelm A1 - Strecker, Manfred T1 - Effect of vegetation cover on millennial-scale landscape denudation rates in East Africa JF - Lithosphere N2 - The mechanisms by which climate and vegetation affect erosion rates over various time scales lie at the heart of understanding landscape response to climate change. Plot-scale field experiments show that increased vegetation cover slows erosion, implying that faster erosion should occur under low to moderate vegetation cover. However, demonstrating this concept over long time scales and across landscapes has proven to be difficult, especially in settings complicated by tectonic forcing and variable slopes. We investigate this problem by measuring cosmogenic Be-10-derived catchment-mean denudation rates across a range of climate zones and hillslope gradients in the Kenya Rift, and by comparing our results with those published from the Rwenzori Mountains of Uganda. We find that denudation rates from sparsely vegetated parts of the Kenya Rift are up to 0.13 mm/yr, while those from humid and more densely vegetated parts of the Kenya Rift flanks and the Rwenzori Mountains reach a maximum of 0.08 mm/yr, despite higher median hillslope gradients. While differences in lithology and recent land-use changes likely affect the denudation rates and vegetation cover values in some of our studied catchments, hillslope gradient and vegetation cover appear to explain most of the variation in denudation rates across the study area. Our results support the idea that changing vegetation cover can contribute to complex erosional responses to climate or land-use change and that vegetation cover can play an important role in determining the steady-state slopes of mountain belts through its stabilizing effects on the land surface. Y1 - 2015 U6 - https://doi.org/10.1130/L402.1 SN - 1941-8264 SN - 1947-4253 VL - 7 IS - 4 SP - 408 EP - 420 PB - American Institute of Physics CY - Boulder ER - TY - JOUR A1 - Dey, Saptarshi A1 - Thiede, Rasmus Christoph A1 - Schildgen, Taylor F. A1 - Wittmann, Hella A1 - Bookhagen, Bodo A1 - Scherler, Dirk A1 - Jain, Vikrant A1 - Strecker, Manfred T1 - Climate-driven sediment aggradation and incision since the late Pleistocene in the NW Himalaya, India JF - Earth & planetary science letters N2 - Deciphering the response of sediment routing systems to climatic forcing is fundamental for understanding the impacts of climate change on landscape evolution. In the Kangra Basin (northwest Sub-Himalaya, India), upper Pleistocene to Holocene alluvial fills and fluvial terraces record periodic fluctuations of sediment supply and transport capacity on timescales of 10(3) to 10(5) yr. To evaluate the potential influence of climate change on these fluctuations, we compare the timing of aggradation and incision phases recorded within remnant alluvial fans and terraces with climate archives. New surface-exposure dating of six terrace levels with in-situ cosmogenic Be-10 indicates the onset of incision phases. Two terrace surfaces from the highest level (T1) sculpted into the oldest preserved alluvial fan (AF1) date back to 53.4 +/- 3.2 ka and 43.0 +/- 2.7 ka (1 sigma). T2 surfaces sculpted into the remnants of AF1 have exposure ages of 18.6 +/- 1.2 ka and 15.3 +/- 0.9 ka, while terraces sculpted into the upper Pleistocene-Holocene fan (AF2) provide ages of 9.3 +/- 0.4 ka (T3), 7.1 +/- 0.4 ka (T4), 5.2 +/- 0.4 ka (T5) and 3.6 +/- 0.2 ka (T6). Together with previously published OSL ages yielding the timing of aggradation, we find a correlation between variations in sediment transport with oxygen-isotope records from regions affected by the Indian Summer Monsoon. During periods of increased monsoon intensity and post-Last Glacial Maximum glacial retreat, aggradation occurred in the Kangra Basin, likely due to high sediment flux, whereas periods of weakened monsoon intensity or lower sediment supply coincide with incision. (C) 2016 Elsevier B.V. All rights reserved. KW - alluvial-fan sedimentation KW - terrestrial cosmogenic nuclides KW - Indian Summer Monsoon KW - Last Glacial Maximum KW - paleo-erosion rate Y1 - 2016 U6 - https://doi.org/10.1016/j.epsl.2016.05.050 SN - 0012-821X SN - 1385-013X VL - 449 SP - 321 EP - 331 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Rohrmann, Alexander A1 - Strecker, Manfred A1 - Bookhagen, Bodo A1 - Mulch, Andreas A1 - Sachse, Dirk A1 - Pingel, Heiko A1 - Alonso, Ricardo N. A1 - Schildgen, Taylor F. A1 - Montero, Carolina T1 - Can stable isotopes ride out the storms? The role of convection for water isotopes in models, records, and paleoaltimetry studies in the central Andes JF - Earth & planetary science letters KW - stable isotopes KW - Andes KW - precipitation KW - convection KW - paleoaltimetry KW - TRMM satellite data Y1 - 2014 U6 - https://doi.org/10.1016/j.epsl.2014.09.021 SN - 0012-821X SN - 1385-013X VL - 407 SP - 187 EP - 195 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Tofelde, Stefanie A1 - Schildgen, Taylor F. A1 - Savi, Sara A1 - Pingel, Heiko A1 - Wickert, Andrew D. A1 - Bookhagen, Bodo A1 - Wittmann, Hella A1 - Alonso, Ricardo N. A1 - Cottle, John A1 - Strecker, Manfred T1 - 100 kyr fluvial cut-and-fill terrace cycles since the Middle Pleistocene in the southern Central Andes, NW Argentina JF - Earth & planetary science letters N2 - Fluvial fill terraces in intermontane basins are valuable geomorphic archives that can record tectonically and/or climatically driven changes of the Earth-surface process system. However, often the preservation of fill terrace sequences is incomplete and/or they may form far away from their source areas, complicating the identification of causal links between forcing mechanisms and landscape response, especially over multi-millennial timescales. The intermontane Toro Basin in the southern Central Andes exhibits at least five generations of fluvial terraces that have been sculpted into several-hundred-meter-thick Quaternary valley-fill conglomerates. New surface-exposure dating using nine cosmogenic Be-10 depth profiles reveals the successive abandonment of these terraces with a 100 kyr cyclicity between 75 +/- 7 and 487 +/- 34 ka. Depositional ages of the conglomerates, determined by four Al-26/Be-10 burial samples and U-Pb zircon ages of three intercalated volcanic ash beds, range from 18 +/- 141 to 936 +/- 170 ka, indicating that there were multiple cut-and-fill episodes. Although the initial onset of aggradation at similar to 1 Ma and the overall net incision since ca. 500 ka can be linked to tectonic processes at the narrow basin outlet, the superimposed 100 kyr cycles of aggradation and incision are best explained by eccentricity-driven climate change. Within these cycles, the onset of river incision can be correlated with global cold periods and enhanced humid phases recorded in paleoclimate archives on the adjacent Bolivian Altiplano, whereas deposition occurred mainly during more arid phases on the Altiplano and global interglacial periods. We suggest that enhanced runoff during global cold phases - due to increased regional precipitation rates, reduced evapotranspiration, or both - resulted in an increased sediment-transport capacity in the Toro Basin, which outweighed any possible increases in upstream sediment supply and thus triggered incision. Compared with two nearby basins that record precessional (21-kyr) and long-eccentricity (400-kyr) forcing within sedimentary and geomorphic archives, the recorded cyclicity scales with the square of the drainage basin length. (C) 2017 Elsevier B.V. All rights reserved. KW - Be-10 depth-profiles KW - surface inflation KW - aggradation-incision cycles KW - glacial-interglacial cycles KW - landscape response to climate change KW - Eastern Cordillera Y1 - 2017 U6 - https://doi.org/10.1016/j.epsl.2017.06.001 SN - 0012-821X SN - 1385-013X VL - 473 SP - 141 EP - 153 PB - Elsevier CY - Amsterdam ER -