TY - GEN A1 - Baur, Heiner A1 - Hirschmüller, Anja A1 - Jahn, Michael A1 - Müller, Steffen A1 - Mayer, Frank T1 - Therapeutic efficiency and biomechanical effects of sport insoles in female runners T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 624 KW - polyurethane foam KW - overuse injury KW - biomechanical effect KW - female runner KW - injury symptom Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-435525 SN - 1866-8364 IS - 624 ER - TY - GEN A1 - Wahmkow, Gunnar A1 - Cassel, Michael A1 - Mayer, Frank A1 - Baur, Heiner T1 - Effects of different medial arch support heights on rearfoot kinematics N2 - Background Foot orthoses are usually assumed to be effective by optimizing mechanically dynamic rearfoot configuration. However, the effect from a foot orthosis on kinematics that has been demonstrated scientifically has only been marginal. The aim of this study was to examine the effect of different heights in medial arch-supported foot orthoses on rear foot motion during gait. Methods Nineteen asymptomatic runners (36±11years, 180±5cm, 79±10kg; 41±22km/week) participated in the study. Trials were recorded at 3.1 mph (5 km/h) on a treadmill. Athletes walked barefoot and with 4 different not customized medial arch-supported foot orthoses of various arch heights (N:0 mm, M:30 mm, H:35 mm, E:40mm). Six infrared cameras and the `Oxford Foot Model´ were used to capture motion. The average stride in each condition was calculated from 50 gait cycles per condition. Eversion excursion and internal tibia rotation were analyzed. Descriptive statistics included calculating the mean ± SD and 95% CIs. Group differences by condition were analyzed by one factor (foot orthoses) repeated measures ANOVA (α = 0.05). Results Eversion excursion revealed the lowest values for N and highest for H (B:4.6°±2.2°; 95% CI [3.1;6.2]/N:4.0°±1.7°; [2.9;5.2]/M:5.2°±2.6°; [3.6;6.8]/H:6.2°±3.3°; [4.0;8.5]/E:5.1°±3.5°; [2.8;7.5]) (p>0.05). Range of internal tibia rotation was lowest with orthosis H and highest with E (B:13.3°±3.2°; 95% CI [11.0;15.6]/N:14.5°±7.2°; [9.2;19.6]/M:13.8°±5.0°; [10.8;16.8]/H:12.3°±4.3°; [9.0;15.6]/E:14.9°±5.0°; [11.5;18.3]) (p>0.05). Differences between conditions were small and the intrasubject variation high. Conclusion Our results indicate that different arch support heights have no systematic effect on eversion excursion or the range of internal tibia rotation and therefore might not exert a crucial influence on rear foot alignment during gait. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 348 Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-402934 ER - TY - GEN A1 - Müller, Juliane A1 - Engel, Tilman A1 - Müller, Steffen A1 - Stoll, Josefine A1 - Baur, Heiner A1 - Mayer, Frank T1 - Effects of sudden walking perturbations on neuromuscular reflex activity and three-dimensional motion of the trunk in healthy controls and back pain symptomatic subjects N2 - Background Back pain patients (BPP) show delayed muscle onset, increased co-contractions, and variability as response to quasi-static sudden trunk loading in comparison to healthy controls (H). However, it is unclear whether these results can validly be transferred to suddenly applied walking perturbations, an automated but more functional and complex movement pattern. There is an evident need to develop research-based strategies for the rehabilitation of back pain. Therefore, the investigation of differences in trunk stability between H and BPP in functional movements is of primary interest in order to define suitable intervention regimes. The purpose of this study was to analyse neuromuscular reflex activity as well as three-dimensional trunk kinematics between H and BPP during walking perturbations. Methods Eighty H (31m/49f;29±9yrs;174±10cm;71±13kg) and 14 BPP (6m/8f;30±8yrs;171±10cm;67±14kg) walked (1m/s) on a split-belt treadmill while 15 right-sided perturbations (belt decelerating, 40m/s2, 50ms duration; 200ms after heel contact) were randomly applied. Trunk muscle activity was assessed using a 12-lead EMG set-up. Trunk kinematics were measured using a 3-segment-model consisting of 12 markers (upper thoracic (UTA), lower thoracic (LTA), lumbar area (LA)). EMG-RMS ([%],0-200ms after perturbation) was calculated and normalized to the RMS of unperturbed gait. Latency (TON;ms) and time to maximum activity (TMAX;ms) were analysed. Total motion amplitude (ROM;[°]) and mean angle (Amean;[°]) for extension-flexion, lateral flexion and rotation were calculated (whole stride cycle; 0-200ms after perturbation) for each of the three segments during unperturbed and perturbed gait. For ROM only, perturbed was normalized to unperturbed step [%] for the whole stride as well as the 200ms after perturbation. Data were analysed descriptively followed by a student´s t-test to account for group differences. Co-contraction was analyzed between ventral and dorsal muscles (V:R) as well as side right:side left ratio (Sright:Sleft). The coefficient of variation (CV;%) was calculated (EMG-RMS;ROM) to evaluate variability between the 15 perturbations for all groups. With respect to unequal distribution of participants to groups, an additional matched-group analysis was conducted. Fourteen healthy controls out of group H were sex-, age- and anthropometrically matched (group Hmatched) to the BPP. Results No group differences were observed for EMG-RMS or CV analysis (EMG/ROM) (p>0.025). Co-contraction analysis revealed no differences for V:R and Srigth:Sleft between the groups (p>0.025). BPP showed an increased TON and TMAX, being significant for Mm. rectus abdominus (p = 0.019) and erector spinae T9/L3 (p = 0.005/p = 0.015). ROM analysis over the unperturbed stride cycle revealed no differences between groups (p>0.025). Normalization of perturbed to unperturbed step lead to significant differences for the lumbar segment (LA) in lateral flexion with BPP showing higher normalized ROM compared to Hmatched (p = 0.02). BPP showed a significant higher flexed posture (UTA (p = 0.02); LTA (p = 0.004)) during normal walking (Amean). Trunk posture (Amean) during perturbation showed higher trunk extension values in LTA segments for H/Hmatched compared to BPP (p = 0.003). Matched group (BPP vs. Hmatched) analysis did not show any systematic changes of all results between groups. Conclusion BPP present impaired muscle response times and trunk posture, especially in the sagittal and transversal planes, compared to H. This could indicate reduced trunk stability and higher loading during gait perturbations. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 317 Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-394931 ER - TY - GEN A1 - Busch, Aglaja A1 - Blasimann, Angela A1 - Mayer, Frank A1 - Baur, Heiner T1 - Alterations in sensorimotor function after ACL reconstruction during active joint position sense testing. A systematic review T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Background The anterior cruciate ligament (ACL) rupture can lead to impaired knee function. Reconstruction decreases the mechanical instability but might not have an impact on sensorimotor alterations. Objective Evaluation of the sensorimotor function measured with the active joint position sense (JPS) test in anterior cruciate ligament (ACL) reconstructed patients compared to the contralateral side and a healthy control group. Methods The databases MEDLINE, CINAHL, EMBASE, PEDro, Cochrane Library and SPORTDiscus were systematically searched from origin until April 2020. Studies published in English, German, French, Spanish or Italian language were included. Evaluation of the sensorimotor performance was restricted to the active joint position sense test in ACL reconstructed participants or healthy controls. The Preferred Items for Systematic Reviews and Meta-Analyses guidelines were followed. Study quality was evaluated using the Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies. Data was descriptively synthesized. Results Ten studies were included after application of the selective criteria. Higher angular deviation, reaching significant difference (p < 0.001) in one study, was shown up to three months after surgery in the affected limb. Six months post-operative significantly less error (p < 0.01) was found in the reconstructed leg compared to the contralateral side and healthy controls. One or more years after ACL reconstruction significant differences were inconsistent along the studies. Conclusions Altered sensorimotor function was present after ACL reconstruction. Due to inconsistencies and small magnitudes, clinical relevance might be questionable. JPS testing can be performed in acute injured persons and prospective studies could enhance knowledge of sensorimotor function throughout the rehabilitative processes. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 717 KW - Body limbs KW - Knees KW - Sensory perception KW - Anterior cruciate ligament reconstruction KW - Legs KW - Tendons KW - Surgical and invasive medical procedures KW - Systematic reviews Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-521775 SN - 1866-8364 ER - TY - GEN A1 - Hirschmueller, Anja A1 - Baur, Heiner A1 - Braun, Sepp A1 - Kreuz, Peter C. A1 - Suedkamp, Norbert P A1 - Niemeyer, Philipp T1 - Rehabilitation after autologous chondrocyte implantation for isolated cartilage defects of the knee N2 - Autologous chondrocyte implantation for treatment of isolated cartilage defects of the knee has become well established. Although various publications report technical modifications, clinical results, and cell-related issues, little is known about appropriate and optimal rehabilitation after autologous chondrocyte implantation. This article reviews the literature on rehabilitation after autologous chondrocyte implantation and presents a rehabilitation protocol that has been developed considering the best available evidence and has been successfully used for several years in a large number of patients who underwent autologous chondrocyte implantation for cartilage defects of the knee. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 367 KW - autologous chondrocyte implantation KW - cartilage repair KW - cartilage defect KW - cell transplantation KW - knee joint KW - rehabilitation Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-403170 ER - TY - GEN A1 - Müller, Steffen A1 - Carlsohn, Anja A1 - Müller, Juliane A1 - Baur, Heiner A1 - Mayer, Frank T1 - Influence of Obesity on Foot Loading Characteristics in Gait for Children Aged 1 to 12 Years N2 - Background Overweight and obesity are increasing health problems that are not restricted to adults only. Childhood obesity is associated with metabolic, psychological and musculoskeletal comorbidities. However, knowledge about the effect of obesity on the foot function across maturation is lacking. Decreased foot function with disproportional loading characteristics is expected for obese children. The aim of this study was to examine foot loading characteristics during gait of normal-weight, overweight and obese children aged 1-12 years. Methods A total of 10382 children aged one to twelve years were enrolled in the study. Finally, 7575 children (m/f: n = 3630/3945; 7.0 +/- 2.9yr; 1.23 +/- 0.19m; 26.6 +/- 10.6kg; BMI: 17.1 +/- 2.4kg/m(2)) were included for (complete case) data analysis. Children were categorized to normalweight (>= 3rd and <90th percentile; n = 6458), overweight (>= 90rd and <97th percentile; n = 746) or obese (>97th percentile; n = 371) according to the German reference system that is based on age and gender-specific body mass indices (BMI). Plantar pressure measurements were assessed during gait on an instrumented walkway. Contact area, arch index (AI), peak pressure (PP) and force time integral (FTI) were calculated for the total, fore-, mid-and hindfoot. Data was analyzed descriptively (mean +/- SD) followed by ANOVA/Welch-test (according to homogeneity of variances: yes/no) for group differences according to BMI categorization (normal-weight, overweight, obesity) and for each age group 1 to 12yrs (post-hoc Tukey Kramer/Dunnett's C; alpha = 0.05). Results Mean walking velocity was 0.95 +/- 0.25 m/s with no differences between normal-weight, overweight or obese children (p = 0.0841). Results show higher foot contact area, arch index, peak pressure and force time integral in overweight and obese children (p< 0.001). Obese children showed the 1.48-fold (1 year-old) to 3.49-fold (10 year-old) midfoot loading (FTI) compared to normal-weight. Conclusion Additional body mass leads to higher overall load, with disproportional impact on the midfoot area and longitudinal foot arch showing characteristic foot loading patterns. Already the feet of one and two year old children are significantly affected. Childhood overweight and obesity is not compensated by the musculoskeletal system. To avoid excessive foot loading with potential risk of discomfort or pain in childhood, prevention strategies should be developed and validated for children with a high body mass index and functional changes in the midfoot area. The presented plantar pressure values could additionally serve as reference data to identify suspicious foot loading patterns in children. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 284 KW - plantar pressure distribution KW - body-mass index KW - prepubescent children KW - overweight children KW - childhood obesity KW - walking KW - speed KW - forces KW - adolescents KW - prevalence Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-90108 ER -