TY - JOUR A1 - Müller, Steffen A1 - Baur, Heiner A1 - Hirschmueller, Anja A1 - Mayer, Frank T1 - Validität des COP-Verlaufes zur Quantifizierung der funktionalen Gangentwicklung bei Kindern N2 - Functional gait development in children is discussed controversially. Differentiated information about the roll- over process of the foot, represented by the "Center of Pressure" (COP), are still missing. The purpose of the study was the validation of the COP-path to quantify the functional gait development of children. Plantar pressure distribution was measured barefoot with an individual speed on a walkway (tartan) - in 255 children aged between 2 and 15 years. The medial and lateral area enclosed between the COP-path and the bisection of plantar angle (A(med), A(lat), Sigma: A(ml)) was calculated from plantar pressure data. Furthermore, the duration of the COP-path in the heel (COPtimeF), midfoot (COPtimeM) and forefoot (COPtimeV) was analysed. The load distribution under the medial and lateral forefoot was also calculated. The variation coefficient (VC) was calculated as a measure of interindividual variability. The medio-lateral divergency of the COP (Aml) initially decreases with advancing age (-20.2%), followed by a continuous increase (+27.2%). No changes in VC (A(med), A(lat), and A(ml)) appeared during age-related development. COPtimeM remains constant in all children over time. In contrast to COPtimeM, Cop(time)F decreases from youngest to oldest children (-31.0%), and COPtimeV increases (+41.7%). After initial descent up to 8 years of age, VC (COPtimeF, COPtimeM, COPtimeV) remains constant. The mediolateral load under the forefoot did not change. The COP-Path is able to characterise the functional gait development of children. VC values indicate high individual variability of gait pattern. In this context, age-based standard values should be critically discussed Y1 - 2006 ER - TY - JOUR A1 - Baur, Heiner A1 - Müller, Steffen A1 - Hirschmüller, Anja A1 - Huber, Georg A1 - Mayer, Frank T1 - Reactivity, stability, and strength performance capacity in motor sports JF - British journal of sports medicine : the journal of sport and exercise medicine N2 - Background: Racing drivers require multifaceted cognitive and physical abilities in a multitasking situation. A knowledge of their physical capacities may help to improve fitness and performance. Objective: To compare reaction time, stability performance capacity, and strength performance capacity of elite racing drivers with those of age-matched, physically active controls. Methods: Eight elite racing drivers and 10 physically active controls matched for age and weight were tested in a reaction and determination test requiring upper and lower extremity responses to visual and audio cues. Further tests comprised evaluation of one-leg postural stability on a two-dimensional moveable platform, measures of maximum strength performance capacity of the extensors of the leg on a leg press, and a test of force capacity of the arms in a sitting position at a steering wheel. An additional arm endurance test consisted of isometric work at the steering wheel at + 30 degrees and -30 degrees where an eccentric threshold load of 30 N.m was applied. Subjects had to hold the end positions above this threshold until exhaustion. Univariate one way analysis of variance (alpha = 0.05) including a Bonferroni adjustment was used to detect group differences between the drivers and controls. Results: The reaction time of the racing drivers was significantly faster than the controls ( p = 0.004). The following motor reaction time and reaction times in the multiple determination test did not differ between the groups. No significant differences (p> 0.05) were found for postural stability, leg extensor strength, or arm strength and endurance. Conclusions: Racing drivers have faster reaction times than age-matched physically active controls. Further development of motor sport-specific test protocols is suggested. According to the requirements of motor racing, strength and sensorimotor performance capacity can potentially be improved. Y1 - 2006 U6 - https://doi.org/10.1136/bjsm.2006.025783 SN - 0306-3674 VL - 40 SP - 906 EP - 910 PB - BMJ Publ. Group CY - London ER - TY - JOUR A1 - Baur, Heiner A1 - Hirschmüller, Anja A1 - Cassel, Michael A1 - Müller, Steffen A1 - Mayer, Frank T1 - Gender-specific neuromuscular activity of the M. peroneus longus in healthy runners : a descriptive laboratory study N2 - Background: Gender-specific neuromuscular activity for the ankle (e.g., peroneal muscle) is currently not known. This knowledge may contribute to the understanding of overuse injury mechanisms. The purpose was therefore to analyse the neuromuscular activity of the peroneal muscle in healthy runners. Methods: Fifty-three male and 54 female competitive runners were tested on a treadmill at 3.33 m s(-1). Neuromuscular activity of the M. peroneus longus was measured by electromyography and analysed in the time domain (onset of activation, time of maximum of activation, total time of activation) in % of stride time in relation to touchdown (= 1.0). Additionally, mean amplitudes for the gait cycle phases preactivation, weight acceptance and push-off were calculated and normalised to the mean activity of the entire gait cycle. Findings: Onset of activation (mean; female: 0.86/male: 0.90, p<0.0001) and time of maximum of activation (female: 1.13/male: 1.16, p<0.0001) occurred earlier in female compared to male and the total time of activation was longer in women (female: 0.42/male: 0.39, p=0.0036). In preactivation, women showed higher amplitudes (+ 21%) compared to men (female: 1.16/male: 0.92, p<0.0001). Activity during weight acceptance (female: 2.26/male: 2.41, p = 0.0039) and push-off (female: 0.93/male: 1.07, p = 0.0027) were higher in men. Interpretation: Activation strategies of the peroneal muscle appear to be gender-specific. Higher preactivation amplitudes in females indicate a different neuromuscular control in anticipation of touchdown ("pre-programmed activity"). These data may help interpret epidemiologically reported differences between genders in overuse injury frequency and localisation. Y1 - 2010 UR - http://www.sciencedirect.com/science/journal/02680033 U6 - https://doi.org/10.1016/j.clinbiomech.2010.06.009 SN - 0268-0033 ER - TY - JOUR A1 - Baur, Heiner A1 - Müller, Steffen A1 - Hirschmüller, Anja A1 - Cassel, Michael A1 - Weber, Josefine A1 - Mayer, Frank T1 - Comparison in lower leg neuromuscular activity between runners with unilateral mid-portion Achilles tendinopathy and healthy individuals JF - Journal of electromyography and kinesiology N2 - Neuromuscular control in functional situations and possible impairments due to Achilles tendinopathy are not well understood. Thirty controls (CO) and 30 runners with Achilles tendinopathy (AT) were tested on a treadmill at 3.33 m s(-1) (12 km h(-1)). Neuromuscular activity of the lower leg (tibialis anterior, peroneal, and gastrocnemius muscle) was measured by surface electromyography. Mean amplitude values (MAV) for the gait cycle phases preactivation, weight acceptance and push-off were calculated and normalised to the mean activity of the entire gait cycle. MAVs of the tibialis anterior did not differ between CO and AT in any gait cycle phase. The activation of the peroneal muscle was lower in AT in weight acceptance (p = 0.006), whereas no difference between CO and AT was found in preactivation (p = 0.71) and push-off (p = 0.83). Also, MAVs of the gastrocnemius muscle did not differ between AT and CO in preactivity (p = 0.71) but were reduced in AT during weight acceptance (p = 0.001) and push-off (p = 0.04). Achilles tendinopathy does not seem to alter pre-programmed neural control but might induce mechanical deficits of the lower extremity during weight bearing (joint stability). This should be addressed in the therapy process of AT. KW - Ankle joint KW - Electromyography KW - Overuse injury KW - Running gait Y1 - 2011 U6 - https://doi.org/10.1016/j.jelekin.2010.11.010 SN - 1050-6411 VL - 21 IS - 3 SP - 499 EP - 505 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Hirschmüller, Anja A1 - Konstantinidis, Lukas A1 - Baur, Heiner A1 - Müller, Steffen A1 - Mehlhorn, Alexander A1 - Kontermann, Julia A1 - Grosse, Ulrich A1 - Südkamp, Norbert P. A1 - Helwig, Peter T1 - Do changes in dynamic plantar pressure distribution, strength capacity and postural control after intra-articular calcaneal fracture correlate with clinical and radiological outcome? JF - Injury : international journal of the care of the injured N2 - Fractures of the calcaneus are often associated with serious permanent disability, a considerable reduction in quality of life, and high socio-economic cost. Although some studies have already reported changes in plantar pressure distribution after calcaneal fracture, no investigation has yet focused on the patient's strength and postural control. Method: 60 patients with unilateral, operatively treated, intra-articular calcaneal fractures were clinically and biomechanically evaluated >1 year postoperatively (physical examination, SF-36, AOFAS score, lower leg isokinetic strength, postural control and gait analysis including plantar pressure distribution). Results were correlated to clinical outcome and preoperative radiological findings (Bohler angle, Zwipp and Sanders Score). Results: Clinical examination revealed a statistically significant reduction in range of motion at the tibiotalar and the subtalar joint on the affected side. Additionally, there was a statistically significant reduction of plantar flexor peak torque of the injured compared to the uninjured limb (p < 0.001) as well as a reduction in postural control that was also more pronounced on the initially injured side (standing duration 4.2 +/- 2.9 s vs. 7.6 +/- 2.1 s, p < 0.05). Plantar pressure measurements revealed a statistically significant pressure reduction at the hindfoot (p = 0.0007) and a pressure increase at the midfoot (p = 0.0001) and beneath the lateral forefoot (p = 0.037) of the injured foot. There was only a weak correlation between radiological classifications and clinical outcome but a moderate correlation between strength differences and the clinical questionnaires (CC 0.27-0.4) as well as between standing duration and the clinical questionnaires. Although thigh circumference was also reduced on the injured side, there was no important relationship between changes in lower leg circumference and strength suggesting that measurement of leg circumference may not be a valid assessment of maximum strength deficits. Self-selected walking speed was the parameter that showed the best correlation with clinical outcome (AOFAS score). Conclusion: Calcaneal fractures are associated with a significant reduction in ankle joint ROM, plantar flexion strength and postural control. These impairments seem to be highly relevant to the patients. Restoration of muscular strength and proprioception should therefore be aggressively addressed in the rehabilitation process after these fractures. KW - Intra-articular calcaneal fracture KW - Calcaneus KW - Muscle strength KW - Peak torque KW - Plantar pressure distribution KW - Proprioception KW - Postural control KW - Balance KW - Gait KW - Rehabilitation Y1 - 2011 U6 - https://doi.org/10.1016/j.injury.2010.09.040 SN - 0020-1383 VL - 42 IS - 10 SP - 1135 EP - 1143 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Baur, Heiner A1 - Hirschmüller, Anja A1 - Müller, Steffen A1 - Mayer, Frank T1 - Neuromuscular activity of the peroneal muscle after foot orthoses therapy in runners JF - Medicine and science in sports and exercise : official journal of the American College of Sports Medicine N2 - BAUR, H., A. HIRSCHMULLER, S. MULLER, and F. MAYER. Neuromuscular Activity of the Peroneal Muscle after Foot Orthoses Therapy in Runners. Med. Sci. Sports Exerc., Vol. 43, No. 8, pp. 1500-1506, 2011. Purpose: Foot orthoses are a standard option to treat overuse injury. Biomechanical data providing mechanisms of foot orthoses' effectiveness are sparse. Stability of the ankle joint complex might be a key factor. The purpose was therefore to analyze neuromuscular activity of the musculus peroneus longus in runners with overuse injury symptoms treated with foot orthoses. Methods: A total of 99 male and female runners with overuse injury symptoms randomized in a control group (CO) and an orthoses group (OR) were analyzed on a treadmill at 3.3 m.s(-1) before and after an 8-wk foot orthoses intervention. Muscular activity of the musculus peroneus longus was measured and quantified in the time domain (initial onset of activation (T-ini), time of maximal activity (T-max), total time of activation (T-tot)) and amplitude domain (amplitude in preactivation (A(pre)), weight acceptance (A(wa)), push-off (A(po))). Results: Peroneal activity in the time domain did not differ initially between CO and OR, and no effect was observed after therapy (T-ini: CO = -0.88 +/- 0.09, OR = -0.88 +/- 0.08 / T-max: CO = 0.14 +/- 0.06, OR = 0.15 +/- 0.06 / T-tot: CO = 0.40 +/- 0.09, OR = 0.41 +/- 0.09; P > 0.05). In preactivation (Apre), muscle activity was higher in OR after intervention (CO = 0.97 +/- 0.32, 95% confidence interval = 0.90-1.05; OR = 1.18 +/- 0.43, 95% confidence interval = 1.08-1.28; P = 0.003). There was no group or intervention effect during stance (A(wa): CO = 2.33 +/- 0.66, OR = 2.33 +/- 0.74 / A(po): CO = 0.80 +/- 0.41, OR = 0.88 +/- 0.40; P > 0.05). Conclusions: Enhanced muscle activation of the musculus peroneus longus in preactivation suggests an altered preprogrammed activity, which might lead to better ankle stability providing a possible mode of action for foot orthoses therapy. KW - ANKLE JOINT KW - EMG KW - INSERT KW - INSOLE KW - JOINT STABILITY KW - OVERUSE INJURY Y1 - 2011 U6 - https://doi.org/10.1249/MSS.0b013e31820c64ae SN - 0195-9131 VL - 43 IS - 8 SP - 1500 EP - 1506 PB - Lippincott Williams & Wilkins CY - Philadelphia ER - TY - JOUR A1 - Müller, Steffen A1 - Mayer, Patrizia A1 - Baur, Heiner A1 - Mayer, Frank T1 - Higher velocities in isokinetic dynamometry a pilot study of new test mode with active compensation of inertia JF - Isokinetics and exercise science : official journal of the European Isokinetic Society N2 - Isokinetic dynamometry is a standard technique for strength testing and training. Nevertheless reliability and validity is limited due to inertia effects, especially for high velocities. Therefore in a first methodological approach the purpose was to evaluate a new isokinetic measurement mode including inertia compensation compared to a classic isokinetic measurement mode for single and multijoint movements at different velocities. Isokinetic maximum strength measurements were carried out in 26 healthy active subjects. Tests were performed using classic isokinetic and new isokinetic mode in random order. Maximum torque/force, maximum movement velocity and time for acceleration were calculated. For inter-instrument agreement Bland and Altman analysis, systematic and random error was quantified. Differences between both methods were assessed (ANOVA alpha = 0.05). Bland and Altman analysis showed the highest agreement between the two modes for strength and velocity measurements (bias: < +/- 1.1%; LOA: < 14.2%) in knee flexion/extension at slow isokinetic velocity (60 degrees/s). Least agreement (range: bias: -67.6% +/- 119.0%; LOA: 53.4% 69.3%) was observed for shoulder/arm test at high isokinetic velocity (360 degrees/s). The Isokin(new) mode showed higher maximum movement velocities (p < 0.05). For low isokinetic velocities the new mode agrees with the classic mode. Especially at high isokinetic velocities the new isokinetic mode shows relevant benefits coupled with a possible trade-off with the force/torque measurement. In conclusion, this study offers for the first time a comparison between the 'classical' and inertia-compensated isokinetic dynamometers indicating the advantages and disadvantages associated with each individual approach, particularly as they relate to medium or high velocities in testing and training. KW - Strength testing KW - concentric KW - validity KW - trunk KW - knee KW - shoulder Y1 - 2011 U6 - https://doi.org/10.3233/IES-2011-0398 SN - 0959-3020 VL - 19 IS - 2 SP - 63 EP - 70 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Hirschmüller, Anja A1 - Baur, Heiner A1 - Müller, Steffen A1 - Helwig, Peter A1 - Dickhuth, Hans-Hermann A1 - Mayer, Frank T1 - Clinical effectiveness of customised sport shoe orthoses for overuse injuries in runners a randomised controlled study JF - British journal of sports medicine : the journal of sport and exercise medicine N2 - Background and objectives Treatment of chronic running-related overuse injuries by orthopaedic shoe orthoses is very common but not evidence-based to date. Hypothesis Polyurethane foam orthoses adapted to a participant's barefoot plantar pressure distribution are an effective treatment option for chronic overuse injuries in runners. Design Prospective, randomised, controlled clinical trial. Intervention 51 patients with running injuries were treated with custom-made, semirigid running shoe orthoses for 8 weeks. 48 served as a randomised control group that continued regular training activity without any treatment. Main outcome measures Evaluation was made by the validated pain questionnaire Subjective Pain Experience Scale, the pain disability index and a comfort index in the orthoses group (ICI). Results There were statistically significant differences between the orthoses and control groups at 8 weeks for the pain disability index (mean difference 3.2; 95% CI 0.9 to 5.5) and the Subjective Pain Experience Scale (6.6; 2.6 to 10.6). The patients with orthoses reported a rising wearing comfort (pre-treatment ICI 69/100; post-treatment ICI 83/100) that was most pronounced in the first 4 weeks (ICI 80.4/100). Conclusion Customised polyurethane running shoe orthoses are an effective conservative therapy strategy for chronic running injuries with high comfort and acceptance of injured runners. Y1 - 2011 U6 - https://doi.org/10.1136/bjsm.2008.055830 SN - 0306-3674 VL - 45 IS - 12 SP - 959 EP - 965 PB - BMJ Publ. Group CY - London ER - TY - JOUR A1 - Müller, Steffen A1 - Carlsohn, Anja A1 - Müller, Juliane A1 - Baur, Heiner A1 - Mayer, Frank T1 - Static and dynamic foot characteristics in children aged 1-13 years a cross-sectional study JF - Gait & posture N2 - The aim of this study was to acquire static and dynamic foot geometry and loading in childhood, and to establish data for age groups of a population of 1-13 year old infants and children. A total of 10,382 children were recruited and 7788 children (48% males and 52% females) were finally included into the data analysis. For static foot geometry foot length and foot width were quantified in a standing position. Dynamic foot geometry and loading were assessed during walking on a walkway with self selected speed (Novel Emed X, 100 Hz, 4 sensors/cm(2)). Contact area (CA), peak pressure (PP), force time integral (FTI) and the arch index were calculated for the total, fore-, mid- and hindfoot. Results show that most static and dynamic foot characteristics change continuously during growth and maturation. Static foot length and width increased with age from 13.1 +/- 0.8 cm (length) and 5.7 +/- 0.4 cm (width) in the youngest to 24.4 +/- 1.5 cm (length) and 8.9 +/- 0.6 cm (width) in the oldest. A mean walking velocity of 0.94 +/- 0.25 m/s was observed. Arch-index ranged from 0.32 +/- 0.04 [a.u.] in the one-year old to 0.21 +/- 0.13 [a.u.] in the 5-year olds and remains constant afterwards. This study provides data for static and dynamic foot characteristics in children based on a cohort of 7788 subjects. Static and dynamic foot measures change differently during growth and maturation. Dynamic foot measurements provide additional information about the children's foot compared to static measures. KW - Children KW - Foot KW - Geometry KW - Arch-index KW - Plantar pressure Y1 - 2012 U6 - https://doi.org/10.1016/j.gaitpost.2011.10.357 SN - 0966-6362 VL - 35 IS - 3 SP - 389 EP - 394 PB - Elsevier CY - Clare ER - TY - JOUR A1 - Hirschmueller, Anja A1 - Frey, Victoria A1 - Konstantinidis, Lukas A1 - Baur, Heiner A1 - Dickhuth, Hans-Hermann A1 - Suedkamp, Norbert P. A1 - Helwig, Peter T1 - Prognostic value of achilles tendon doppler sonography in asymptomatic runners JF - Medicine and science in sports and exercise : official journal of the American College of Sports Medicine N2 - HIRSCHMULLER, A., V. FREY, L. KONSTANTINIDIS, H. BAUR, H-H. DICKHUTH, N. P. SUDKAMP, and P. HELWIG. Prognostic Value of Achilles Tendon Doppler Sonography in Asymptomatic Runners. Med. Sci. Sports Exerc., Vol. 44, No. 2, pp. 199-205, 2012. Introduction: Midportion Achilles tendinopathy (MPT) is a common problem in running athletes. Nevertheless, its etiology is not fully understood, and no valid prognostic criterion to predict the development of MPT could be identified to date. The purpose of the present study, therefore, was to evaluate whether power Doppler ultrasonography (PDU) is a suitable method to identify a predisposition to MPT in yet asymptomatic runners. Methods: At 23 major running events, 634 asymptomatic long-distance runners were tested for Achilles tendon thickness, vascularization, and structural abnormalities using a high-resolution PDU device (Toshiba Aplio SSA-770A/80, 12 MHz). In addition, their medical history and anthropometric data were documented. All subjects were contacted 6 and 12 months later and asked about any new symptoms. The collected anamnestic, anthropometric, and ultrasonographic data were subjected to regression analysis to determine their predictive value concerning the manifestation of midportion Achilles tendon complaints (P < 0.05). Results: The highest odds ratio (OR) for manifestation of MPT within 1 yr was found for intratendinous blood flow ("neovascularization,'' OR = 6.9, P < 0.001). An increased risk was also identified for subjects with a positive history of Achilles tendon complaints (OR = 3.8, P < 0.001). A third relevant parameter, just above the level of significance, was a spindle-shaped thickening of the tendon on PDU (Wald chi(2) = 3.42). Conclusions: PDU detection of intratendinous microvessels in the Achilles tendons of healthy runners seems to be a prognostically relevant factor concerning the manifestation of symptomatic MPT. This finding lays the foundation for an early identification of a predisposition to MPT as well as prophylactic intervention in as yet asymptomatic runners. KW - MIDPORTION KW - TENDINOPATHY KW - NEOVASCULARIZATION KW - PROGNOSIS Y1 - 2012 U6 - https://doi.org/10.1249/MSS.0b013e31822b7318 SN - 0195-9131 VL - 44 IS - 2 SP - 199 EP - 205 PB - Lippincott Williams & Wilkins CY - Philadelphia ER -