TY - JOUR A1 - Müller, Steffen A1 - Carlsohn, Anja A1 - Müller, Juliane A1 - Baur, Heiner A1 - Mayer, Frank T1 - Static and dynamic foot characteristics in children aged 1-13 years a cross-sectional study JF - Gait & posture N2 - The aim of this study was to acquire static and dynamic foot geometry and loading in childhood, and to establish data for age groups of a population of 1-13 year old infants and children. A total of 10,382 children were recruited and 7788 children (48% males and 52% females) were finally included into the data analysis. For static foot geometry foot length and foot width were quantified in a standing position. Dynamic foot geometry and loading were assessed during walking on a walkway with self selected speed (Novel Emed X, 100 Hz, 4 sensors/cm(2)). Contact area (CA), peak pressure (PP), force time integral (FTI) and the arch index were calculated for the total, fore-, mid- and hindfoot. Results show that most static and dynamic foot characteristics change continuously during growth and maturation. Static foot length and width increased with age from 13.1 +/- 0.8 cm (length) and 5.7 +/- 0.4 cm (width) in the youngest to 24.4 +/- 1.5 cm (length) and 8.9 +/- 0.6 cm (width) in the oldest. A mean walking velocity of 0.94 +/- 0.25 m/s was observed. Arch-index ranged from 0.32 +/- 0.04 [a.u.] in the one-year old to 0.21 +/- 0.13 [a.u.] in the 5-year olds and remains constant afterwards. This study provides data for static and dynamic foot characteristics in children based on a cohort of 7788 subjects. Static and dynamic foot measures change differently during growth and maturation. Dynamic foot measurements provide additional information about the children's foot compared to static measures. KW - Children KW - Foot KW - Geometry KW - Arch-index KW - Plantar pressure Y1 - 2012 U6 - https://doi.org/10.1016/j.gaitpost.2011.10.357 SN - 0966-6362 VL - 35 IS - 3 SP - 389 EP - 394 PB - Elsevier CY - Clare ER - TY - CHAP A1 - König, Niklas A1 - Stoll, Andreas A1 - Mayer, Frank A1 - Baur, Heiner T1 - Intrasession reliability of insole in-shoe plantar pressure measurements in different foot areas T2 - Medicine and science in sports and exercise : official journal of the American College of Sports Medicine Y1 - 2012 SN - 0195-9131 VL - 44 SP - 941 EP - 941 PB - Lippincott Williams & Wilkins CY - Philadelphia ER - TY - JOUR A1 - Baur, Heiner A1 - Hirschmüller, Anja A1 - Cassel, Michael A1 - Müller, Steffen A1 - Mayer, Frank T1 - Gender-specific neuromuscular activity of the M. peroneus longus in healthy runners : a descriptive laboratory study N2 - Background: Gender-specific neuromuscular activity for the ankle (e.g., peroneal muscle) is currently not known. This knowledge may contribute to the understanding of overuse injury mechanisms. The purpose was therefore to analyse the neuromuscular activity of the peroneal muscle in healthy runners. Methods: Fifty-three male and 54 female competitive runners were tested on a treadmill at 3.33 m s(-1). Neuromuscular activity of the M. peroneus longus was measured by electromyography and analysed in the time domain (onset of activation, time of maximum of activation, total time of activation) in % of stride time in relation to touchdown (= 1.0). Additionally, mean amplitudes for the gait cycle phases preactivation, weight acceptance and push-off were calculated and normalised to the mean activity of the entire gait cycle. Findings: Onset of activation (mean; female: 0.86/male: 0.90, p<0.0001) and time of maximum of activation (female: 1.13/male: 1.16, p<0.0001) occurred earlier in female compared to male and the total time of activation was longer in women (female: 0.42/male: 0.39, p=0.0036). In preactivation, women showed higher amplitudes (+ 21%) compared to men (female: 1.16/male: 0.92, p<0.0001). Activity during weight acceptance (female: 2.26/male: 2.41, p = 0.0039) and push-off (female: 0.93/male: 1.07, p = 0.0027) were higher in men. Interpretation: Activation strategies of the peroneal muscle appear to be gender-specific. Higher preactivation amplitudes in females indicate a different neuromuscular control in anticipation of touchdown ("pre-programmed activity"). These data may help interpret epidemiologically reported differences between genders in overuse injury frequency and localisation. Y1 - 2010 UR - http://www.sciencedirect.com/science/journal/02680033 U6 - https://doi.org/10.1016/j.clinbiomech.2010.06.009 SN - 0268-0033 ER - TY - JOUR A1 - Müller, Juliane A1 - Müller, Steffen A1 - Stoll, Josefine A1 - Baur, Heiner A1 - Mayer, Frank T1 - Trunk extensor and flexor strength capacity in healthy young elite athletes aged 11-15 Years JF - Journal of strength and conditioning research : the research journal of the NSCA N2 - Mueller, J, Mueller, S, Stoll, J, Baur, H, and Mayer, F. Trunk extensor and flexor strength capacity in healthy young elite athletes aged 11-15 years. J Strength Cond Res 28(5): 1328-1334, 2014-Differences in trunk strength capacity because of gender and sports are well documented in adults. In contrast, data concerning young athletes are sparse. The purpose of this study was to assess the maximum trunk strength of adolescent athletes and to investigate differences between genders and age groups. A total of 520 young athletes were recruited. Finally, 377 (n = 233/144 M/F; 13 +/- 1 years; 1.62 +/- 0.11 m height; 51 +/- 12 kg mass; training: 4.5 +/- 2.6 years; training sessions/week: 4.3 +/- 3.0; various sports) young athletes were included in the final data analysis. Furthermore, 5 age groups were differentiated (age groups: 11, 12, 13, 14, and 15 years; n = 90, 150, 42, 43, and 52, respectively). Maximum strength of trunk flexors (Flex) and extensors (Ext) was assessed in all subjects during isokinetic concentric measurements (60 degrees center dot s(-1); 5 repetitions; range of motion: 55 degrees). Maximum strength was characterized by absolute peak torque (Flex(abs), Ext(abs); N center dot m), peak torque normalized to body weight (Flex(norm), Ext(norm); N center dot m center dot kg(-1) BW), and Flex(abs)/Ext(abs) ratio (RKquot). Descriptive data analysis (mean +/- SD) was completed, followed by analysis of variance (alpha = 0.05; post hoc test [Tukey-Kramer]). Mean maximum strength for all athletes was 97 +/- 34 N center dot m in Flex(abs) and 140 +/- 50 N center dot m in Ext(abs) (Flex(norm) = 1.9 +/- 0.3 N center dot m center dot kg(-1) BW, Ext(norm) = 2.8 +/- 0.6 N center dot m center dot kg(-1) BW). Males showed statistically significant higher absolute and normalized values compared with females (p < 0.001). Flex(abs) and Ext(abs) rose with increasing age almost 2-fold for males and females (Flex(abs), Ext(abs): p < 0.001). Flex(norm) and Ext(norm) increased with age for males (p < 0.001), however, not for females (Flex(norm): p = 0.26; Ext(norm): p = 0.20). RKquot (mean +/- SD: 0.71 +/- 0.16) did not reveal any differences regarding age (p = 0.87) or gender (p = 0.43). In adolescent athletes, maximum trunk strength must be discussed in a gender- and age-specific context. The Flex(abs)/Ext(abs) ratio revealed extensor dominance, which seems to be independent of age and gender. The values assessed may serve as a basis to evaluate and discuss trunk strength in athletes. KW - core KW - adolescents KW - isokinetic KW - strength performance Y1 - 2014 U6 - https://doi.org/10.1519/JSC.0000000000000280 SN - 1064-8011 SN - 1533-4287 VL - 28 IS - 5 SP - 1328 EP - 1334 PB - Lippincott Williams & Wilkins CY - Philadelphia ER - TY - JOUR A1 - Müller, Juliane A1 - Müller, Steffen A1 - Baur, Heiner A1 - Mayer, Frank T1 - Intra-individual gait speed variability in healthy children aged 1-15 years JF - Gait & posture N2 - Introduction: Gait speed is one of the most commonly and frequently used parameters to evaluate gait development. It is characterized by high variability when comparing different steps in children. The objective of this study was to determine intra-individual gait speed variability in children. Methods: Gait speed measurements (6-10 trials across a 3 m walkway) were performed and analyzed in 8263 children, aged 1-15 years. The coefficient of variation (CV) served as a measure for intra-individual gait speed variability measured in 6.6 +/- 1.0 trials per child. Multiple linear regression analysis was conducted to evaluate the influence of age and body height on changes in variability. Additionally, a subgroup analysis for height within the group of 6-year-old children was applied. Results: A successive reduction in gait speed variability (CV) was observed for age groups (age: 1-15 years) and body height groups (height: 0.70-1.90 m). The CV in the oldest subjects was only one third of the CV (CV 6.25 +/- 3.52%) in the youngest subjects (CV 16.58 +/- 10.01%). Up to the age of 8 years (or 1.40 m height) there was a significant reduction in CV over time, compared to a leveling off for the older (taller) children. Discussion: The straightforward approach measuring gait speed variability in repeated trials might serve as a fundamental indicator for gait development in children. Walking velocity seems to increase to age 8. Enhanced gait speed consistency of repeated trials develops up to age 15. KW - Development KW - Gait KW - Speed KW - Variability KW - Children Y1 - 2013 U6 - https://doi.org/10.1016/j.gaitpost.2013.02.011 SN - 0966-6362 SN - 1879-2219 VL - 38 IS - 4 SP - 631 EP - 636 PB - Elsevier CY - Clare ER - TY - JOUR A1 - Baur, Heiner A1 - Müller, Steffen A1 - Hirschmüller, Anja A1 - Cassel, Michael A1 - Weber, Josefine A1 - Mayer, Frank T1 - Comparison in lower leg neuromuscular activity between runners with unilateral mid-portion Achilles tendinopathy and healthy individuals JF - Journal of electromyography and kinesiology N2 - Neuromuscular control in functional situations and possible impairments due to Achilles tendinopathy are not well understood. Thirty controls (CO) and 30 runners with Achilles tendinopathy (AT) were tested on a treadmill at 3.33 m s(-1) (12 km h(-1)). Neuromuscular activity of the lower leg (tibialis anterior, peroneal, and gastrocnemius muscle) was measured by surface electromyography. Mean amplitude values (MAV) for the gait cycle phases preactivation, weight acceptance and push-off were calculated and normalised to the mean activity of the entire gait cycle. MAVs of the tibialis anterior did not differ between CO and AT in any gait cycle phase. The activation of the peroneal muscle was lower in AT in weight acceptance (p = 0.006), whereas no difference between CO and AT was found in preactivation (p = 0.71) and push-off (p = 0.83). Also, MAVs of the gastrocnemius muscle did not differ between AT and CO in preactivity (p = 0.71) but were reduced in AT during weight acceptance (p = 0.001) and push-off (p = 0.04). Achilles tendinopathy does not seem to alter pre-programmed neural control but might induce mechanical deficits of the lower extremity during weight bearing (joint stability). This should be addressed in the therapy process of AT. KW - Ankle joint KW - Electromyography KW - Overuse injury KW - Running gait Y1 - 2011 U6 - https://doi.org/10.1016/j.jelekin.2010.11.010 SN - 1050-6411 VL - 21 IS - 3 SP - 499 EP - 505 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - König, Niklas A1 - Reschke, Antje A1 - Wolter, Martin A1 - Müller, Steffen A1 - Mayer, Frank A1 - Baur, Heiner T1 - Plantar pressure trigger for reliable nerve stimulus application during dynamic H-reflex measurements JF - Gait & posture N2 - In dynamic H-reflex measurements, the standardisation of the nerve stimulation to the gait cycle is crucial to avoid misinterpretation due to altered pre-synaptic inhibition. In this pilot study, a plantar pressure sole was used to trigger the stimulation of the tibialis nerve with respect to the gait cycle. Consequently, the intersession reliability of the soleus muscle H-reflex during treadmill walking was investigated. Seven young participants performed walking trials on a treadmill at 5 km/h. The stimulating electrode was placed on the tibial nerve in the popliteal fossa. An EMG was recorded from the soleus muscle. To synchronize the stimulus to the gait cycle, initial heel strike was detected with a plantar pressure sole. Maximum H-reflex amplitude and M-wave amplitude were obtained and the Hmax/Mmax ratio was calculated. Data reveals excellent reliability, ICC = 0.89. Test-retest variability was 13.0% (+/- 11.8). The Bland-Altman analysis showed a systematic error of 2.4%. The plantar pressure sole was capable of triggering the stimulation of the tibialis nerve in a reliable way and offers a simple technique for the evaluation of reflex activity during walking. KW - Monosynaptic reflexes KW - Reflex reproducibility KW - Treadmill walking Y1 - 2013 U6 - https://doi.org/10.1016/j.gaitpost.2012.09.021 SN - 0966-6362 VL - 37 IS - 4 SP - 637 EP - 639 PB - Elsevier CY - Clare ER - TY - JOUR A1 - Müller, Steffen A1 - Baur, Heiner A1 - Hirschmueller, Anja A1 - Mayer, Frank T1 - Validität des COP-Verlaufes zur Quantifizierung der funktionalen Gangentwicklung bei Kindern N2 - Functional gait development in children is discussed controversially. Differentiated information about the roll- over process of the foot, represented by the "Center of Pressure" (COP), are still missing. The purpose of the study was the validation of the COP-path to quantify the functional gait development of children. Plantar pressure distribution was measured barefoot with an individual speed on a walkway (tartan) - in 255 children aged between 2 and 15 years. The medial and lateral area enclosed between the COP-path and the bisection of plantar angle (A(med), A(lat), Sigma: A(ml)) was calculated from plantar pressure data. Furthermore, the duration of the COP-path in the heel (COPtimeF), midfoot (COPtimeM) and forefoot (COPtimeV) was analysed. The load distribution under the medial and lateral forefoot was also calculated. The variation coefficient (VC) was calculated as a measure of interindividual variability. The medio-lateral divergency of the COP (Aml) initially decreases with advancing age (-20.2%), followed by a continuous increase (+27.2%). No changes in VC (A(med), A(lat), and A(ml)) appeared during age-related development. COPtimeM remains constant in all children over time. In contrast to COPtimeM, Cop(time)F decreases from youngest to oldest children (-31.0%), and COPtimeV increases (+41.7%). After initial descent up to 8 years of age, VC (COPtimeF, COPtimeM, COPtimeV) remains constant. The mediolateral load under the forefoot did not change. The COP-Path is able to characterise the functional gait development of children. VC values indicate high individual variability of gait pattern. In this context, age-based standard values should be critically discussed Y1 - 2006 ER - TY - JOUR A1 - Hirschmueller, Anja A1 - Frey, Victoria A1 - Konstantinidis, Lukas A1 - Baur, Heiner A1 - Dickhuth, Hans-Hermann A1 - Suedkamp, Norbert P. A1 - Helwig, Peter T1 - Prognostic value of achilles tendon doppler sonography in asymptomatic runners JF - Medicine and science in sports and exercise : official journal of the American College of Sports Medicine N2 - HIRSCHMULLER, A., V. FREY, L. KONSTANTINIDIS, H. BAUR, H-H. DICKHUTH, N. P. SUDKAMP, and P. HELWIG. Prognostic Value of Achilles Tendon Doppler Sonography in Asymptomatic Runners. Med. Sci. Sports Exerc., Vol. 44, No. 2, pp. 199-205, 2012. Introduction: Midportion Achilles tendinopathy (MPT) is a common problem in running athletes. Nevertheless, its etiology is not fully understood, and no valid prognostic criterion to predict the development of MPT could be identified to date. The purpose of the present study, therefore, was to evaluate whether power Doppler ultrasonography (PDU) is a suitable method to identify a predisposition to MPT in yet asymptomatic runners. Methods: At 23 major running events, 634 asymptomatic long-distance runners were tested for Achilles tendon thickness, vascularization, and structural abnormalities using a high-resolution PDU device (Toshiba Aplio SSA-770A/80, 12 MHz). In addition, their medical history and anthropometric data were documented. All subjects were contacted 6 and 12 months later and asked about any new symptoms. The collected anamnestic, anthropometric, and ultrasonographic data were subjected to regression analysis to determine their predictive value concerning the manifestation of midportion Achilles tendon complaints (P < 0.05). Results: The highest odds ratio (OR) for manifestation of MPT within 1 yr was found for intratendinous blood flow ("neovascularization,'' OR = 6.9, P < 0.001). An increased risk was also identified for subjects with a positive history of Achilles tendon complaints (OR = 3.8, P < 0.001). A third relevant parameter, just above the level of significance, was a spindle-shaped thickening of the tendon on PDU (Wald chi(2) = 3.42). Conclusions: PDU detection of intratendinous microvessels in the Achilles tendons of healthy runners seems to be a prognostically relevant factor concerning the manifestation of symptomatic MPT. This finding lays the foundation for an early identification of a predisposition to MPT as well as prophylactic intervention in as yet asymptomatic runners. KW - MIDPORTION KW - TENDINOPATHY KW - NEOVASCULARIZATION KW - PROGNOSIS Y1 - 2012 U6 - https://doi.org/10.1249/MSS.0b013e31822b7318 SN - 0195-9131 VL - 44 IS - 2 SP - 199 EP - 205 PB - Lippincott Williams & Wilkins CY - Philadelphia ER - TY - INPR A1 - Baur, Heiner A1 - Hoffmann, Jan A1 - Reichmuth, Anne A1 - Müller, Steffen A1 - Mayer, Frank T1 - Influence of carbon fiber foot orthoses on plantar pressure distribution in cycling T2 - Sportverletzung, Sportschaden : Grundlagen, Prävention, Rehabilitation N2 - Background: Several equipment interventions like optimizing seat position or optimizing shoe/insole/pedal interface are suggested to reduce overuse injury in cycling. Data analyzing clinical or biomechanical effects of those interventions is sparse. Foot orthoses out of carbon fiber are one possibility to alter the interface between foot and pedal. The aim of this study was therefore to analyze plantar pressure distribution in carbon fiber foot orthoses in comparison to standard insoles of commercially available cycling shoes. Materials and Methods: 11 pain-free triathletes (Age: 29 +/- 9, 1.77 +/- 0.04 m, 68 5 kg) were tested on a cycle ergometer at 60 and 90 rotations per minute (rpm) at workloads of 200 and 300 Watts. Subjects wore in randomized order a cycling shoe with its standard insole (control condition CO) or the shoe with carbon fiber foot orthoses (Condition CA). Mean peak pressure out of 30 movement cycles were extracted for the total foot and specific foot regions (rear, mid, fore foot (medial, central, lateral) and toe region). Three-factor ANOVAs (factor foot orthoses, rpm, workload) for repeated measures (alpha = 0.05) were used to analyze the main question of a foot orthoses effect on peak in-shoe plantar pressure. Results: Peak pressures in the total foot were in a range of 70-75 kPa for 200 Watts (W) (300 W: 85-110 kPa). The carbon fiber foot orthoses reduced peak pressures by -4,1% compared to the standard insole (p = 0,10). In the foot regions rear(-16,6%, p<0.001), mid (-20,0%, p<0.001) and fore foot (-5.9%, p < 0.03)CA reduced peak pressure compared to CO. In the toe region, peak pressure was higher in CA (+16,2%) compared to CO (p<0,001). The lateral fore foot showed higher peak pressures in CA (+34%) and CO (+59%) compared to medial and central fore foot. Conclusion: Carbon fiber can serve as a suitable material for foot orthoses manufacturing in cycling. Plantar pressures do not increase due to the stiffness of the carbon. Individual customization may have the potential to reduce peak pressure in certain foot areas. KW - Carbon KW - Cycling KW - Foot orthoses KW - In-shoe measurement KW - Plantar Pressure Distribution Y1 - 2012 SN - 0932-0555 VL - 26 IS - 1 SP - 12 EP - 17 PB - Thieme CY - Stuttgart ER -