TY - JOUR A1 - Andres, Dorothee A1 - Gohlke, Ulrich A1 - Bröker, Nina Kristin A1 - Schulze, Stefan A1 - Rabsch, Wolfgang A1 - Heinemann, Udo A1 - Barbirz, Stefanie A1 - Seckler, Robert T1 - An essential serotype recognition pocket on phage P22 tailspike protein forces Salmonella enterica serovar Paratyphi A O-antigen fragments to bind as nonsolution conformers JF - Glycobiology N2 - Bacteriophage P22 recognizes O-antigen polysaccharides of Salmonella enterica subsp. enterica (S.) with its tailspike protein (TSP). In the serovars S. Typhimurium, S. Enteritidis, and S. Paratyphi A, the tetrasaccharide repeat units of the respective O-antigens consist of an identical main chain trisaccharide but different 3,6-dideoxyhexose substituents. Here, the epimers abequose, tyvelose and paratose determine the specific serotype. P22 TSP recognizes O-antigen octasaccharides in an extended binding site with a single 3,6-dideoxyhexose binding pocket. We have isolated S. Paratyphi A octasaccharides which were not available previously and determined the crystal structure of their complex with P22 TSP. We discuss our data together with crystal structures of complexes with S. Typhimurium and S. Enteritidis octasaccharides determined earlier. Isothermal titration calorimetry showed that S. Paratyphi A octasaccharide binds P22 TSP less tightly, with a difference in binding free energy of similar to 7 kJ mol(-1) at 20 degrees C compared with S. Typhimurium and S. Enteritidis octasaccharides. Individual protein-carbohydrate contacts were probed by amino acid replacements showing that the dideoxyhexose pocket contributes to binding of all three serotypes. However, S. Paratyphi A octasaccharides bind in a conformation with an energetically unfavorable phi/epsilon glycosidic bond angle combination. In contrast, octasaccharides from the other serotypes bind as solution-like conformers. Two water molecules are conserved in all P22 TSP complexes with octasaccharides of different serotypes. They line the dideoxyhexose binding pocket and force the S. Paratyphi A octasaccharides to bind as nonsolution conformers. This emphasizes the role of solvent as part of carbohydrate binding sites. KW - bacterial O-antigen KW - carbohydrate interaction KW - paratose KW - structural thermodynamics KW - tailspike protein Y1 - 2013 U6 - https://doi.org/10.1093/glycob/cws224 SN - 0959-6658 VL - 23 IS - 4 SP - 486 EP - 494 PB - Oxford Univ. Press CY - Cary ER - TY - JOUR A1 - Andres, Dorothee A1 - Roske, Yvette A1 - Doering, Carolin A1 - Heinemann, Udo A1 - Seckler, Robert A1 - Barbirz, Stefanie T1 - Tail morphology controls DNA release in two Salmonella phages with one lipopolysaccharide receptor recognition system JF - Molecular microbiology N2 - Bacteriophages use specific tail proteins to recognize host cells. It is still not understood to molecular detail how the signal is transmitted over the tail to initiate infection. We have analysed in vitro DNA ejection in long-tailed siphovirus 9NA and short-tailed podovirus P22 upon incubation with Salmonella typhimurium lipopolysaccharide (LPS). We showed for the first time that LPS alone was sufficient to elicit DNA release from a siphovirus in vitro. Crystal structure analysis revealed that both phages use similar tailspike proteins for LPS recognition. Tailspike proteins hydrolyse LPS O antigen to position the phage on the cell surface. Thus we were able to compare in vitro DNA ejection processes from two phages with different morphologies with the same receptor under identical experimental conditions. Siphovirus 9NA ejected its DNA about 30 times faster than podovirus P22. DNA ejection is under control of the conformational opening of the particle and has a similar activation barrier in 9NA and P22. Our data suggest that tail morphology influences the efficiencies of particle opening given an identical initial receptor interaction event. Y1 - 2012 U6 - https://doi.org/10.1111/j.1365-2958.2012.08006.x SN - 0950-382X VL - 83 IS - 6 SP - 1244 EP - 1253 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Andres, Dorothee A1 - Hanke, Christin A1 - Baxa, Ulrich A1 - Seul, Anait A1 - Barbirz, Stefanie A1 - Seckler, Robert T1 - Tailspike interactions with lipopolysaccharide effect DNA ejection from phage P22 particles in vitro N2 - Initial attachment of bacteriophage P22 to the Salmonella host cell is known to be mediated by interactions between lipopolysaccharide (LPS) and the phage tailspike proteins (TSP), but the events that subsequently lead to DNA injection into the bacterium are unknown. We used the binding of a fluorescent dye and DNA accessibility to DNase and restriction enzymes to analyze DNA ejection from phage particles in vitro. Ejection was specifically triggered by aggregates of purified Salmonella LPS but not by LPS with different O-antigen structure, by lipid A, phospholipids, or soluble O-antigen polysaccharide. This suggests that P22 does not use a secondary receptor at the bacterial outer membrane surface. Using phage particles reconstituted with purified mutant TSP in vitro, we found that the endorhamnosidase activity of TSP degrading the O-antigen polysaccharide was required prior to DNA ejection in vitro and DNA replication in vivo. If, however, LPS was pre-digested with soluble TSP, it was no longer able to trigger DNA ejection, even though it still contained five O-antigen oligosaccharide repeats. Together with known data on the structure of LPS and phage P22, our results suggest a molecular model. In this model, tail-spikes position the phage particles on the outer membrane surface for DNA ejection. They force gp26, the central needle and plug protein of the phage tail machine, through the core oligosaccharide layer and into the hydrophobic portion of the outer membrane, leading to refolding of the gp26 lazo-domain, release of the plug, and ejection of DNA and pilot proteins. Y1 - 2010 UR - http://www.jbc.org/ U6 - https://doi.org/10.1074/jbc.M110.169003 SN - 0021-9258 ER - TY - JOUR A1 - Andres, Dorothee A1 - Baxa, Ulrich A1 - Hanke, Christin A1 - Seckler, Robert A1 - Barbirz, Stefanie T1 - Carbohydrate binding of Salmonella phage P22 tailspike protein and its role during host cell infection N2 - TSPs (tailspike proteins) are essential infection organelles of bacteriophage P22. Upon infection, P22TSP binds to and cleaves the O-antigen moiety of the LPS (lipopolysaccharide) of its Salmonella host To elucidate the role of TSP during infection, we have studied binding to oligosaccharides and polysaccharides of Salmonella enteric Typhimurium and Enteritidis in vitro. P22TSP is a trimeric beta-helical protein with a carbohydrate-binding site on each subunit. Octasaccharide O-antigen fragments bind to P22TSP with micromolar dissociation constants. Moreover, P22TSP is an endorhamnosidase and cleaves the host O-antigen. Catalytic residues lie at the periphery of the high-affinity binding site, which enables unproductive binding modes, resulting in slow hydrolysis. However, the role of this hydrolysis function during infection remains unclear. Binding of polysaccharide to P22TSP is of high avidity with slow dissociation rates when compared with oligosaccharides. In vivo, the infection of Salmonella with phage P22 can be completely inhibited by the addition of LPS, indicating that binding of phage to its host via TSP is an essential step for infection. Y1 - 2010 UR - http://www.biochemsoctrans.org/ U6 - https://doi.org/10.1042/Bst0381386 SN - 0300-5127 ER - TY - JOUR A1 - Broeker, Nina K. A1 - Roske, Yvette A1 - Valleriani, Angelo A1 - Stephan, Mareike Sophia A1 - Andres, Dorothee A1 - Koetz, Joachim A1 - Heinemann, Udo A1 - Barbirz, Stefanie T1 - Time-resolved DNA release from an O-antigen-specific Salmonella bacteriophage with a contractile tail JF - The journal of biological chemistry N2 - Myoviruses, bacteriophages with T4-like architecture, must contract their tails prior to DNA release. However, quantitative kinetic data on myovirus particle opening are lacking, although they are promising tools in bacteriophage-based antimicrobial strategies directed against Gram-negative hosts. For the first time, we show time-resolved DNA ejection from a bacteriophage with a contractile tail, the multi-O-antigen-specific Salmonella myovirus Det7. DNA release from Det7 was triggered by lipopolysaccharide (LPS) O-antigen receptors and notably slower than in noncontractile-tailed siphoviruses. Det7 showed two individual kinetic steps for tail contraction and particle opening. Our in vitro studies showed that highly specialized tailspike proteins (TSPs) are necessary to attach the particle to LPS. A P22-like TSP confers specificity for the Salmonella Typhimurium O-antigen. Moreover, crystal structure analysis at 1.63 angstrom resolution confirmed that Det7 recognized the Salmonella Anatum O-antigen via an E15-like TSP, DettilonTSP. DNA ejection triggered by LPS from either host showed similar velocities, so particle opening is thus a process independent of O-antigen composition and the recognizing TSP. In Det7, at permissive temperatures TSPs mediate O-antigen cleavage and couple cell surface binding with DNA ejection, but no irreversible adsorption occurred at low temperatures. This finding was in contrast to short-tailed Salmonella podoviruses, illustrating that tailed phages use common particle-opening mechanisms but have specialized into different infection niches. KW - bacteriophage KW - lipopolysaccharide (YLPS) KW - structural biology KW - DNA viruses KW - glycobiology KW - fluorescence KW - Salmonella enterica KW - contractile tail KW - DNA ejection KW - O-antigen specificity KW - Salmonella myovirus KW - tailspike protein KW - molecular machine Y1 - 2019 U6 - https://doi.org/10.1074/jbc.RA119.008133 SN - 1083-351X VL - 294 IS - 31 SP - 11751 EP - 11761 PB - American Society for Biochemistry and Molecular Biology CY - Bethesda ER -