TY - GEN A1 - Beckmann, Nadine A1 - Becker, Katrin Anne A1 - Kadow, Stephanie A1 - Schumacher, Fabian A1 - Kramer, Melanie A1 - Kühn, Claudine A1 - Schulz-Schaeffer, Walter J. A1 - Edwards, Michael J. A1 - Kleuser, Burkhard A1 - Gulbins, Erich A1 - Carpinteiro, Alexander T1 - Acid sphingomyelinase deficiency ameliorates Farber disease T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Farber disease is a rare lysosomal storage disorder resulting from acid ceramidase deficiency and subsequent ceramide accumulation. No treatments for Farber disease are clinically available, and affected patients have a severely shortened lifespan. We have recently reported a novel acid ceramidase deficiency model that mirrors the human disease closely. Acid sphingomyelinase is the enzyme that generates ceramide upstream of acid ceramidase in the lysosomes. Using our acid ceramidase deficiency model, we tested if acid sphingomyelinase could be a potential novel therapeutic target for the treatment of Farber disease. A number of functional acid sphingomyelinase inhibitors are clinically available and have been used for decades to treat major depression. Using these as a therapeutic for Farber disease, thus, has the potential to improve central nervous symptoms of the disease as well, something all other treatment options for Farber disease can’t achieve so far. As a proof-of-concept study, we first cross-bred acid ceramidase deficient mice with acid sphingomyelinase deficient mice in order to prevent ceramide accumulation. Double-deficient mice had reduced ceramide accumulation, fewer disease manifestations, and prolonged survival. We next targeted acid sphingomyelinase pharmacologically, to test if these findings would translate to a setting with clinical applicability. Surprisingly, the treatment of acid ceramidase deficient mice with the acid sphingomyelinase inhibitor amitriptyline was toxic to acid ceramidase deficient mice and killed them within a few days of treatment. In conclusion, our study provides the first proof-of-concept that acid sphingomyelinase could be a potential new therapeutic target for Farber disease to reduce disease manifestations and prolong survival. However, we also identified previously unknown toxicity of the functional acid sphingomyelinase inhibitor amitriptyline in the context of Farber disease, strongly cautioning against the use of this substance class for Farber disease patients T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1087 KW - Farber disease KW - lysosomal storage disorders KW - acid ceramidase KW - acid sphingomyelinase KW - amitriptyline Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-441282 SN - 1866-8372 IS - 1087 ER - TY - JOUR A1 - Rancan, Fiorenza A1 - Volkmann, Hildburg A1 - Giulbudagian, Michael A1 - Schumacher, Fabian A1 - Stanko, Jessica Isolde A1 - Kleuser, Burkhard A1 - Blume-Peytavi, Ulrike A1 - Calderon, Marcelo A1 - Vogt, Annika T1 - Dermal Delivery of the High-Molecular-Weight Drug Tacrolimus by Means of Polyglycerol-Based Nanogels JF - Pharmaceutics : Molecular Diversity Preservation International N2 - Polyglycerol-based thermoresponsive nanogels (tNGs) have been shown to have excellent skin hydration properties and to be valuable delivery systems for sustained release of drugs into skin. In this study, we compared the skin penetration of tacrolimus formulated in tNGs with a commercial 0.1% tacrolimus ointment. The penetration of the drug was investigated in ex vivo abdominal and breast skin, while different methods for skin barrier disruption were investigated to improve skin permeability or simulate inflammatory conditions with compromised skin barrier. The amount of penetrated tacrolimus was measured in skin extracts by liquid chromatography tandem-mass spectrometry (LC-MS/MS), whereas the inflammatory markers IL-6 and IL-8 were detected by enzyme-linked immunosorbent assay (ELISA). Higher amounts of tacrolimus penetrated in breast as compared to abdominal skin or in barrier-disrupted as compared to intact skin, confirming that the stratum corneum is the main barrier for tacrolimus skin penetration. The anti-proliferative effect of the penetrated drug was measured in skin tissue/Jurkat cells co-cultures. Interestingly, tNGs exhibited similar anti-proliferative effects as the 0.1% tacrolimus ointment. We conclude that polyglycerol-based nanogels represent an interesting alternative to paraffin-based formulations for the treatment of inflammatory skin conditions. KW - tacrolimus formulation KW - nanogels KW - skin penetration KW - drug delivery KW - human excised skin KW - Jurkat cells Y1 - 2019 U6 - https://doi.org/10.3390/pharmaceutics11080394 SN - 1999-4923 VL - 11 IS - 8 PB - MDPI CY - Basel ER - TY - JOUR A1 - Rakers, Christin A1 - Schumacher, Fabian A1 - Meinl, Walter A1 - Glatt, Hansruedi A1 - Kleuser, Burkhard A1 - Wolber, Gerhard T1 - In Silico Prediction of Human Sulfotransferase 1E1 Activity Guided by Pharmacophores from Molecular Dynamics Simulations JF - The journal of biological chemistry N2 - Acting during phase II metabolism, sulfotransferases (SULTs) serve detoxification by transforming a broad spectrum of compounds from pharmaceutical, nutritional, or environmental sources into more easily excretable metabolites. However, SULT activity has also been shown to promote formation of reactive metabolites that may have genotoxic effects. SULT subtype 1E1 (SULT1E1) was identified as a key player in estrogen homeostasis, which is involved in many physiological processes and the pathogenesis of breast and endometrial cancer. The development of an in silico prediction model for SULT1E1 ligands would therefore support the development of metabolically inert drugs and help to assess health risks related to hormonal imbalances. Here, we report on a novel approach to develop a model that enables prediction of substrates and inhibitors of SULT1E1. Molecular dynamics simulations were performed to investigate enzyme flexibility and sample protein conformations. Pharmacophores were developed that served as a cornerstone of the model, and machine learning techniques were applied for prediction refinement. The prediction model was used to screen the DrugBank (a database of experimental and approved drugs): 28% of the predicted hits were reported in literature as ligands of SULT1E1. From the remaining hits, a selection of nine molecules was subjected to biochemical assay validation and experimental results were in accordance with the in silico prediction of SULT1E1 inhibitors and substrates, thus affirming our prediction hypotheses. KW - drug design KW - drug metabolism KW - liver metabolism KW - molecular dynamics KW - molecular modeling KW - sulfotransferase Y1 - 2016 U6 - https://doi.org/10.1074/jbc.M115.685610 SN - 0021-9258 SN - 1083-351X VL - 291 SP - 58 EP - 71 PB - American Society for Biochemistry and Molecular Biology CY - Bethesda ER - TY - GEN A1 - Doege, N. A1 - Hoenzke, S. A1 - Schumacher, Fabian A1 - Balzus, Benjamin A1 - Colombo, Miriam A1 - Hadam, S. A1 - Rancan, F. A1 - Blume-Peytavi, Ulrike A1 - Schindler, A. A1 - Ruehl, E. A1 - Skov, P. A1 - Church, Martin K. A1 - Hedtrich, Sarah A1 - Kleuser, Burkhard A1 - Bodmeier, Roland A1 - Vogt, A. T1 - Ex vivo microdialysis used for the preclinical assessment of anti-inflammatory therapy T2 - Experimental dermatology : the official journal of the European Immunodermatology Society Y1 - 2016 SN - 0906-6705 SN - 1600-0625 VL - 25 SP - E32 EP - E32 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Döge, Nadine A1 - Hönzke, Stefan A1 - Schumacher, Fabian A1 - Balzus, Benjamin A1 - Colombo, Miriam A1 - Hadam, Sabrina A1 - Rancan, Fiorenza A1 - Blume-Peytavi, Ulrike A1 - Schäfer-Korting, Monika A1 - Schindler, Anke A1 - Rühl, Eckart A1 - Skov, Per Stahl A1 - Church, Martin K. A1 - Hedtrich, Sarah A1 - Kleuser, Burkhard A1 - Bodmeier, Roland A1 - Vogt, Annika T1 - Ethyl cellulose nanocarriers and nanocrystals differentially deliver dexamethasone into intact, tape-stripped or sodium lauryl sulfate-exposed ex vivo human skin - assessment by intradermal microdialysis and extraction from the different skin layers JF - Journal of controlled release N2 - Understanding penetration not only in intact, but also in lesional skin with impaired skin barrier function is important, in order to explore the surplus value of nanoparticle-based drug delivery for anti-inflammatory dermatotherapy. Herein, short-termex vivo cultures of (i) intact human skin, (ii) skin pretreated with tape-strippings and (iii) skin pre-exposed to sodium lauryl sulfate (SLS) were used to assess the penetration of dexamethasone (Dex). Intradermal microdialysis was utilized for up to 24 h after drug application as commercial cream, nanocrystals or ethyl cellulose nanocarriers applied at the therapeutic concentration of 0.05%, respectively. In addition, Dex was assessed in culture media and extracts from stratum corneum, epidermis and dermis after 24 h, and the results were compared to those in heat-separated split skin from studies in Franz diffusion cells. Providing fast drug release, nanocrystals significantly accelerated the penetration of Dex. In contrast to the application of cream and ethyl cellulose nanocarriers, Dex was already detectable in eluates after 6 h when applying nanocrystals on intact skin. Disruption of the skin barrier further accelerated and enhanced the penetration. Encapsulation in ethyl cellulose nanocarriers delayed Dex penetration. Interestingly, for all formulations highly increased concentrations in the dialysate were observed in tape-stripped skin, whereas the extent of enhancement was less in SLS-exposed skin. The results were confirmed in tissue extracts and were in line with the predictions made by in vitro release studies and ex vivo Franz diffusion cell experiments. The use of 45 kDa probes further enabled the collection of inflammatory cytokines. However, the estimation of glucocorticoid efficacy by Interleukin (IL)-6 and IL-8 analysis was limited due to the trauma induced by the probe insertion. Ex vivo intradermal microdialysis combined with culture media analysis provides an effective, skin-sparing method for preclinical assessment of novel drug delivery systems at therapeutic doses in models of diseased skin. (C) 2016 Elsevier B.V. All rights reserved. KW - Drug delivery systems KW - Polymeric nanoparticles KW - Dexamethasone KW - Microdialysis KW - Skin penetration KW - Skin barrier disruption Y1 - 2016 U6 - https://doi.org/10.1016/j.jconrel.2016.07.009 SN - 0168-3659 SN - 1873-4995 VL - 242 SP - 25 EP - 34 PB - Elsevier CY - Amsterdam ER - TY - GEN A1 - Wigger, Dominik A1 - Gulbins, Erich A1 - Kleuser, Burkhard A1 - Schumacher, Fabian T1 - Monitoring the Sphingolipid de novo Synthesis by Stable-Isotope Labeling and Liquid Chromatography-Mass Spectrometry T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Sphingolipids are a class of lipids that share a sphingoid base backbone. They exert various effects in eukaryotes, ranging from structural roles in plasma membranes to cellular signaling. De novo sphingolipid synthesis takes place in the endoplasmic reticulum (ER), where the condensation of the activated C₁₆ fatty acid palmitoyl-CoA and the amino acid L-serine is catalyzed by serine palmitoyltransferase (SPT). The product, 3-ketosphinganine, is then converted into more complex sphingolipids by additional ER-bound enzymes, resulting in the formation of ceramides. Since sphingolipid homeostasis is crucial to numerous cellular functions, improved assessment of sphingolipid metabolism will be key to better understanding several human diseases. To date, no assay exists capable of monitoring de novo synthesis sphingolipid in its entirety. Here, we have established a cell-free assay utilizing rat liver microsomes containing all the enzymes necessary for bottom-up synthesis of ceramides. Following lipid extraction, we were able to track the different intermediates of the sphingolipid metabolism pathway, namely 3-ketosphinganine, sphinganine, dihydroceramide, and ceramide. This was achieved by chromatographic separation of sphingolipid metabolites followed by detection of their accurate mass and characteristic fragmentations through high-resolution mass spectrometry and tandem-mass spectrometry. We were able to distinguish, unequivocally, between de novo synthesized sphingolipids and intrinsic species, inevitably present in the microsome preparations, through the addition of stable isotope-labeled palmitate-d₃ and L-serine-d₃. To the best of our knowledge, this is the first demonstration of a method monitoring the entirety of ER-associated sphingolipid biosynthesis. Proof-of-concept data was provided by modulating the levels of supplied cofactors (e.g., NADPH) or the addition of specific enzyme inhibitors (e.g., fumonisin B₁). The presented microsomal assay may serve as a useful tool for monitoring alterations in sphingolipid de novo synthesis in cells or tissues. Additionally, our methodology may be used for metabolism studies of atypical substrates – naturally occurring or chemically tailored – as well as novel inhibitors of enzymes involved in sphingolipid de novo synthesis. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 800 KW - sphingolipid de novo synthesis KW - serine palmitoyltransferase KW - mass spectrometry KW - stable-isotope labeling KW - ceramides Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-441158 SN - 1866-8372 IS - 800 ER - TY - JOUR A1 - Wigger, Dominik A1 - Gulbins, Erich A1 - Kleuser, Burkhard A1 - Schumacher, Fabian T1 - Monitoring the Sphingolipid de novo Synthesis by Stable-Isotope Labeling and Liquid Chromatography-Mass Spectrometry JF - Frontiers in Cell and Developmental Biology N2 - Sphingolipids are a class of lipids that share a sphingoid base backbone. They exert various effects in eukaryotes, ranging from structural roles in plasma membranes to cellular signaling. De novo sphingolipid synthesis takes place in the endoplasmic reticulum (ER), where the condensation of the activated C₁₆ fatty acid palmitoyl-CoA and the amino acid L-serine is catalyzed by serine palmitoyltransferase (SPT). The product, 3-ketosphinganine, is then converted into more complex sphingolipids by additional ER-bound enzymes, resulting in the formation of ceramides. Since sphingolipid homeostasis is crucial to numerous cellular functions, improved assessment of sphingolipid metabolism will be key to better understanding several human diseases. To date, no assay exists capable of monitoring de novo synthesis sphingolipid in its entirety. Here, we have established a cell-free assay utilizing rat liver microsomes containing all the enzymes necessary for bottom-up synthesis of ceramides. Following lipid extraction, we were able to track the different intermediates of the sphingolipid metabolism pathway, namely 3-ketosphinganine, sphinganine, dihydroceramide, and ceramide. This was achieved by chromatographic separation of sphingolipid metabolites followed by detection of their accurate mass and characteristic fragmentations through high-resolution mass spectrometry and tandem-mass spectrometry. We were able to distinguish, unequivocally, between de novo synthesized sphingolipids and intrinsic species, inevitably present in the microsome preparations, through the addition of stable isotope-labeled palmitate-d₃ and L-serine-d₃. To the best of our knowledge, this is the first demonstration of a method monitoring the entirety of ER-associated sphingolipid biosynthesis. Proof-of-concept data was provided by modulating the levels of supplied cofactors (e.g., NADPH) or the addition of specific enzyme inhibitors (e.g., fumonisin B₁). The presented microsomal assay may serve as a useful tool for monitoring alterations in sphingolipid de novo synthesis in cells or tissues. Additionally, our methodology may be used for metabolism studies of atypical substrates – naturally occurring or chemically tailored – as well as novel inhibitors of enzymes involved in sphingolipid de novo synthesis. KW - sphingolipid de novo synthesis KW - serine palmitoyltransferase KW - mass spectrometry KW - stable-isotope labeling KW - ceramides Y1 - 2019 U6 - https://doi.org/10.3389/fcell.2019.00210 SN - 2296-634X VL - 7 PB - Frontiers Media CY - Lausanne ER - TY - GEN A1 - Gerecke, Christian A1 - Edlich, Alexander A1 - Giulbudagian, Michael A1 - Schumacher, Fabian A1 - Zhang, Nan A1 - Said, Andre A1 - Yealland, Guy A1 - Lohan, Silke B. A1 - Neumann, Falko A1 - Meinke, Martina C. A1 - Ma, Nan A1 - Calderón, Marcelo A1 - Hedtrich, Sarah A1 - Schäfer-Korting, Monika A1 - Kleuser, Burkhard T1 - Biocompatibility and characterization of polyglycerol-based thermoresponsive nanogels designed as novel drug-delivery systems and their intracellular localization in keratinocytes N2 - Novel nanogels that possess the capacity to change their physico-chemical properties in response to external stimuli are promising drug-delivery candidates for the treatment of severe skin diseases. As thermoresponsive nanogels (tNGs) are capable of enhancing penetration through biological barriers such as the stratum corneum and are taken up by keratinocytes of human skin, potential adverse consequences of their exposure must be elucidated. In this study, tNGs were synthesized from dendritic polyglycerol (dPG) and two thermoresponsive polymers. tNG_dPG_tPG are the combination of dPG with poly(glycidyl methyl ether-co-ethyl glycidyl ether) (p(GME-co-EGE)) and tNG_dPG_pNIPAM the one with poly(N-isopropylacrylamide) (pNIPAM). Both thermoresponsive nanogels are able to incorporate high amounts of dexamethasone and tacrolimus, drugs used in the treatment of severe skin diseases. Cellular uptake, intracellular localization and the toxicological properties of the tNGs were comprehensively characterized in primary normal human keratinocytes (NHK) and in spontaneously transformed aneuploid immortal keratinocyte cell line from adult human skin (HaCaT). Laser scanning confocal microscopy revealed fluorescently labeled tNGs entered into the cells and localized predominantly within lysosomal compartments. MTT assay, comet assay and carboxy-H2DCFDA assay, demonstrated neither cytotoxic or genotoxic effects, nor any induction of reactive oxygen species of the tNGs in keratinocytes. In addition, both tNGs were devoid of eye irritation potential as shown by bovine corneal opacity and permeability (BCOP) test and red blood cell (RBC) hemolysis assay. Therefore, our study provides evidence that tNGs are locally well tolerated and underlines their potential for cutaneous drug delivery. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 335 KW - Drug delivery KW - nanoparticles KW - particle characterization KW - keratinocytes KW - nanotoxicology Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-395325 ER - TY - JOUR A1 - Chakraborty, Sudipta A1 - Chen, Pan A1 - Bornhorst, Julia A1 - Schwerdtle, Tanja A1 - Schumacher, Fabian A1 - Kleuser, Burkhard A1 - Bowman, Aaron B. A1 - Aschner, Michael A. T1 - Loss of pdr-1/parkin influences Mn homeostasis through altered ferroportin expression in C-elegans JF - Metallomics : integrated biometal science Y1 - 2015 U6 - https://doi.org/10.1039/c5mt00052a SN - 1756-5901 SN - 1756-591X VL - 7 IS - 5 SP - 847 EP - 856 PB - Royal Society of Chemistry CY - Cambridge ER - TY - CHAP A1 - Wiesner, Melanie A1 - Barknowitz, Gitte A1 - Florian, Simone A1 - Haack, Michael A1 - Lehmann, Carsten A1 - Lippmann, Doris A1 - Mewis, Inga A1 - Schumacher, Fabian A1 - Brigelius-Flohé, Regina A1 - Schreiner, Monika A1 - Glatt, Hansruedi T1 - Pak Choi Fed to Mice: Formation of DNA Adducts and Influence on Xenobiotic-Metabolizing Enzymes T2 - NAUNYN-SCHMIEDEBERGS ARCHIVES OF PHARMACOLOGY Y1 - 2015 SN - 0028-1298 SN - 1432-1912 VL - 388 SP - S68 EP - S68 PB - Springer CY - New York ER - TY - JOUR A1 - Schumacher, Fabian A1 - Chakraborty, Sudipta A1 - Kleuser, Burkhard A1 - Gulbins, Erich A1 - Schwerdtle, Tanja A1 - Aschner, Michael A. A1 - Bornhorst, Julia T1 - Highly sensitive isotope-dilution liquid-chromatography-electrospray ionization-tandem-mass spectrometry approach to study the drug-mediated modulation of dopamine and serotonin levels in Caenorhabditis elegans JF - Talanta : the international journal of pure and applied analytical chemistry N2 - Dopamine (DA) and serotonin (SRT) are monoamine neurotransmitters that play a key role in regulating the central and peripheral nervous system. Their impaired metabolism has been implicated in several neurological disorders, such as Parkinson's disease and depression. Consequently, it is imperative to monitor changes in levels of these low-abundant neurotransmitters and their role in mediating disease. For the first time, a rapid, specific and sensitive isotope-dilution liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for the quantification of DA and SRT in the nematode Caenorhabditis elegans (C. elegans). This model organism offers a unique approach for studying the effect of various drugs and environmental conditions on neurotransmitter levels, given by the conserved DA and SRT biology, including synaptic release, trafficking and formation. We introduce a novel sample preparation protocol incorporating the usage of sodium thiosulfate in perchloric acid as extraction medium that assures high recovery of the relatively unstable neurotransmitters monitored. Moreover, the use of both deuterated internal standards and the multiple reaction monitoring (MRM) technique allows for unequivocal quantification. Thereby, to the best of our knowledge, we achieve a detection sensitivity that clearly exceeds those of published DA and SRT quantification methods in various matrices. We are the first to show that exposure of C elegans to the monoamine oxidase B (MAOB) inhibitor selegiline or the catechol-O-methyltransferase (COMT) inhibitor tolcapone, in order to block DA and SRT degradation, resulted in accumulation of the respective neurotransmitter. Assessment of a behavioral output of the dopaminergic system (basal slowing response) corroborated the analytical LC-MS/MS data. Thus, utilization of the C elegans model system in conjunction with our analytical method is well-suited to investigate drug-mediated modulation of the DA and SRT system in order to identify compounds with neuroprotective or regenerative properties. (C) 2015 Elsevier B.V. All rights reserved. KW - Caenorhabditis elegans KW - Dopamine KW - Serotonin KW - Liquid chromatography-tandem mass spectrometry KW - Isotope-dilution analysis Y1 - 2015 U6 - https://doi.org/10.1016/j.talanta.2015.05.057 SN - 0039-9140 SN - 1873-3573 VL - 144 SP - 71 EP - 79 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Neuber, Corinna A1 - Schumacher, Fabian A1 - Gulbins, Erich A1 - Kleuser, Burkhard T1 - Method to simultaneously determine the sphingosine 1-phosphate breakdown product (2E)-hexadecenal and its fatty acid derivatives using isotope-dilution HPLC-electrospray ionization-quadrupole/time-of-flight mass spectrometry JF - Analytical chemistry N2 - Sphingosine 1-phosphate (S1P), a bioactive lipid involved in various physiological processes, can be irreversibly degraded by the membrane-bound S1P lyase (S1PL) yielding (2E)-hexadecenal and phosphoethanolamine. It is discussed that (2E)-hexadecenal is further oxidized to (2E)-hexadecenoic acid by the long-chain fatty aldehyde dehydrogenase ALDH3A2 (also known as FALDH) prior to activation via coupling to coenzyme A (CoA). Inhibition or defects in these enzymes, S1PL or FALDH, result in severe immunological disorders or the Sjogren-Larsson syndrome, respectively. Hence, it is of enormous importance to simultaneously determine the S1P breakdown product (2E)-hexadecenal and its fatty acid metabolites in biological samples. However, no method is available so far. Here, we present a sensitive and selective isotope-dilution high performance liquid chromatographyelectrospray ionizationquadrupole/time-of-flight mass spectrometry method for simultaneous quantification of (2E)-hexadecenal and its fatty acid metabolites following derivatization with 2-diphenylacetyl-1,3-indandione-1-hydrazone and 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide. Optimized conditions for sample derivatization, chromatographic separation, and MS/MS detection are presented as well as an extensive method validation. Finally, our method was successfully applied to biological samples. We found that (2E)-hexadecenal is almost quantitatively oxidized to (2E)-hexadecenoic acid, that is further activated as verified by cotreatment of HepG2 cell lysates with (2E)-hexadecenal and the acyl-CoA synthetase inhibitor triacsin C. Moreover, incubations of cell lysates with deuterated (2E)-hexadecenal revealed that no hexadecanoic acid is formed from the aldehyde. Thus, our method provides new insights into the sphingolipid metabolism and will be useful to investigate diseases known for abnormalities in long-chain fatty acid metabolism, e.g., the Sjogren-Larsson syndrome, in more detail. Y1 - 2014 U6 - https://doi.org/10.1021/ac501677y SN - 0003-2700 SN - 1520-6882 VL - 86 IS - 18 SP - 9065 EP - 9073 PB - American Chemical Society CY - Washington ER - TY - GEN A1 - Chakraborty, Sudipta A1 - Chen, Pan A1 - Bornhorst, Julia A1 - Schwerdtle, Tanja A1 - Schumacher, Fabian A1 - Kleuser, Burkhard A1 - Bowman, Aaron B. A1 - Aschner, Michael A. T1 - Loss of pdr-1/parkin influences Mn homeostasis through altered ferroportin expression in C. elegans N2 - Overexposure to the essential metal manganese (Mn) can result in an irreversible condition known as manganism that shares similar pathophysiology with Parkinson's disease (PD), including dopaminergic (DAergic) cell loss that leads to motor and cognitive impairments. However, the mechanisms behind this neurotoxicity and its relationship with PD remain unclear. Many genes confer risk for autosomal recessive, early-onset PD, including the parkin/PARK2 gene that encodes for the E3 ubiquitin ligase Parkin. Using Caenorhabditis elegans (C. elegans) as an invertebrate model that conserves the DAergic system, we previously reported significantly increased Mn accumulation in pdr-1/parkin mutants compared to wildtype (WT) animals. For the current study, we hypothesize that this enhanced accumulation is due to alterations in Mn transport in the pdr-1 mutants. While no change in mRNA expression of the major Mn importer proteins (smf-1-3) was found in pdr-1 mutants, significant downregulation in mRNA levels of the putative Mn exporter ferroportin (fpn-1.1) was observed. Using a strain overexpressing fpn-1.1 in worms lacking pdr-1, we show evidence for attenuation of several endpoints of Mn-induced toxicity, including survival, metal accumulation, mitochondrial copy number and DAergic integrity, compared to pdr-1 mutants alone. These changes suggest a novel role of pdr-1 in modulating Mn export through altered transporter expression, and provides further support of metal dyshomeostasis as a component of Parkinsonism pathophysiology. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 290 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-99508 ER -